PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reliability-based dynamical design of a singular structure for high energy physics experiments

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work presents a comprehensive design and dynamic calculation of singular metallic structures, part of the Neutrino Experiment NEXT. The experiment uses an electroluminescent TPC chamber, a high-pressure 136Xe gas vessel enclosing the detector. A lead-block “castle” or containing box shields this vessel against external γ-rays from all directions; in spite of its heavy weight, the castle must be regularly open for the detector maintenance. Since the structures will be constructed at a middle-level seismic localization (Laboratorio Subterráneo Canfranc, Spain), the earthquake hazard must be taken into account. Vessel and castle are supported by a rigid frame, which must satisfy two requirements: (i) the Spanish seismic standard, (ii) for equipment protection, the detector maximum horizontal acceleration must be <1 [m/s2]. This frame rests on special base isolators to decrease horizontal accelerations in case of an earthquake. Three dynamical calculations are conducted: (i) a response spectrum analysis to comply with the standard, (ii) five time-history analyses to calculate tolerances and, (iii) a reliability-based approach using 1000 time-history responses to ensure satisfaction of the operating requirements. The final outcome is the design of a singular structure optimized for the NEXT experiment with a probability of failure against any standard earthquake of only 0.125%.
Rocznik
Strony
256--266
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering and Construction, Universitat Jaume I, Avda Sos Baynat, s/n, 12071 Castellón de la Plana, Spain
autor
  • Enginyeria Mecànica i de la Construcciò Industrial, Universitat de Girona, Spain
  • Mecánica de Medios Continuos y Teoría de Estructuras, Universitat Politècnica de València, Spain
autor
  • Enginyeria Mecànica i de la Construcciò Industrial, Universitat de Girona, Spain
Bibliografia
  • [1] V. Álvarez, et al., Next-100 technical design report (TDR). Executive summary, Journal of Instrumentation 7 (2012) T06001.
  • [2] NCSE-02, Normas de construcción sismorresistente: parte general y edificació, Ministerio de Fomento, Spain.
  • [3] J. Kelly, Base isolation: linear theory and design, Earthquake Spectra 6 (1997) 223–244.
  • [4] C. Alhan, H. Gavin, Reliability of base isolation for the protection of critical equipment from earthquake hazards, Engineering Structures 27 (2005) 1435–1449.
  • [5] H. Iemura, T. Taghikhany, S. Jain, Optimum design of resilient sliding isolation system for seismic protection of equipments, Bulletin of Earthquake Engineering 5 (2007) 85–103.
  • [6] M. Hamidi, M.E. Naggar, On the performance of SCF in seismic isolation of the interior equipment of buildings, Earthquake Engineering & Structural Dynamics 36 (2007) 1581–1604.
  • [7] G. Yao, W.-C. Huang, Performance of a guideway seismic isolator with magnetic springs for precision machinery, Earthquake Engineering & Structural Dynamics 5 (2009) 181– 203.
  • [8] G. Jia, I. Gidaris, A. Taflanidis, G. Mavroeidis, Reliability-based assessment/design of floor isolation systems, Engineering Structures 78 (2014) 1676–1684.
  • [9] L.-Y. Lu, G.-L. Lin, Predictive control of smart isolation system for precision equipment subjected to near-fault earthquakes, Engineering Structures 30 (2008) 3045–3064.
  • [10] H. Gavin, A. Zaicenco, Performance and reliability of semi-active equipment isolation, Journal of Sound and Vibration 306 (2007) 74–90.
  • [11] Eurocode 3, Design of steel structures, The European Standard.
  • [12] Fip industriale leading technologies, http://www. fipindustriale.it (accessed 09.09.10.
  • [13] COMSOL, COMSOL multiphysics 3.3a documentation.
  • [14] C. Computers and Structures Inc., Sap2000 v10 integrated finite element analysis and design of structures, CSI-Berkeley.
  • [15] M. Dolce, D. Cardone, F. Croatto, Frictional behavior of steel- PTFE interfaces for seismic isolation, Bulletin of Earthquake Engineering 3 (2005) 75–99.
  • [16] R. Palma, G. Rus, R. Gallego, Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics, Mechanics of Materials 3 (2005) 1000–1016.
  • [17] D. Boore, Simulation of ground motion using the stochastic method, Pure and Applied Geophysics 160 (2003) 635–676.
  • [18] A. Haldar, S. Mahadevan, Probability, Reliability, and Statistical Methods in Engineering Design, John Wiley & Sons, Inc., 2000.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c2537c4-257f-40ed-905b-641a46e71b56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.