PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positronium imaging in J-PET with an iterative activity reconstruction and a multistage fitting algorithm

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Positronium imaging is a new technique complementary to positron emission tomography (PET) based on the histogramming of time delay between the emission of a de-excitation photon, and a consequent electron-positron annihilation, to estimate the mean lifetime of orthopositronium (o-Ps), which depends on the local size of the voids, concentration of oxygen and bioactive molecules. We improve the resolution and reduce noise in positronium imaging by building time-delay spectra from the PET activity reconstructed by a 3-photon time-of-flight maximum likelihood expectation maximisation. The method was tested on the data measured for four human-tissue samples injected by 22Na and put in the Jagiellonian PET “Big barrel” scanner. Due to an ill-posed problem of fitting time-delay histograms, a multistage optimisation procedure was explored along with inferential analysis of the solution space. Run in parallel for multiple sets of initial guesses, we compared the second-order LevenbergMarquardt algorithm (LMA) and the direct search Nelder-Mead simplex (NMS) method. The LMA proved to be faster and more precise, but the NMS was more stable with a higher convergence rate. The estimated mean o-Ps lifetimes in the 1.9 ns - 2.6 ns range were consistent with the reference results, while other fitting parameters allowed differentiation between the two patients who provided the tissue samples.
Rocznik
Strony
54--63
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • National Centre for Nuclear Research Department of Complex Systems, Otwock-Swierk, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Moskal P. Positronium Imaging. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC); 2019. p. 1-3. doi: 10.1109/NSS/MIC42101.2019.9059856.
  • 2. Moskal P, Kisielewska D, Shopa RY, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2 γ positronium imaging with the total- -body PET scanners. EJNMMI Phys. 2020 dec;7(44):1.
  • 3. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv. 2021 oct;7(42):eabh4394.
  • 4. Harpen MD. Positronium: Review of symmetry, conserved quantities and decay for the radiological physicist. Med Phys. 2003 dec;31(1):57-61.
  • 5. Shibuya K, Saito H, Tashima H, Yamaya T. Using inverse Laplace transform in positronium lifetime imaging. Phys. Med. Biol. 2022 jan;67(2):025009.
  • 6. Bass SD, Mariazzi S, Moskal P, Stepień E. Colloquium: Positronium physics and biomedical applications. Rev. Mod. Phys. 2023 may;95(2):021002.
  • 7. Kostelnik TI, Orvig C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem Rev. 2019 jan;119(2):902-56.
  • 8. Rosar F, Buchholz HG, Michels S, Hoffmann MA, Piel M, Waldmann CM, et al. Image quality analysis of 44Scon two preclinical PET scanners: a comparison to 68Ga. EJNMMI Phys. 2020 dec;7(16):1.
  • 9. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol. 2019;64(5):055017.
  • 10. Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004 jun;4(6):437-47.
  • 11. Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat. Rev. Clin. Oncol. 2012 dec;9(12):674-87.
  • 12. Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin. 2020;15(4):439-52. doi: 10.1016/j.cpet.2020.06.009.
  • 13. Moskal P, Stepień EŁ. Positronium as a biomarker of hypoxia. Bio-Algorithms and Med-Systems 2022 jan;17(4):311-9. doi: 10.1515/bams2021-0189.
  • 14. Jasińska B, Zgardzińska B, Chołubek G, Gorgol M, Wiktor K, Wysoglad K, et al. Human Tissues Investigation Using PALS Technique. Acta Phys. Pol. B. 2017;48(10):1737. doi: 10.5506/APhysPolB.48.1737.
  • 15. Zgardzińska B, Chołubek G, Jarosz B, Wysoglad K, Gorgol M, Goździuk M, et al. Studies on healthy and neoplastic tissues using positron annihilation lifetime spectroscopy and focused histopathological imaging. Sci Rep. 2020 dec;10(1):11890.
  • 16. Stepien E, Kubicz E, Grudzien G, Dulski K, Leszczynski B, Moskal P. Positronium life-time as a new approach for cardiac masses imaging. Eur. Heart J. 2021 oct;42(Supplement_1):3279. doi: 10.1093/eurheartj/ ehab724.3279.
  • 17. Karp JS, Viswanath V, Geagan MJ, Muehllehner G, Pantel AR, Parma MJ, et al. PennPET Explorer: Design and Preliminary Performance of a Whole-Body Imager. J. Nucl. Med. 2020 jan;61(1):136-43.
  • 18. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner-an economic total body PET from plastic scintillators. Phys Med Biol. 2021 sep;66(17):175015. Available from: https://iopscience.iop.org/ article/10.1088/1361-6560/ac16bd. doi:10.1088/1361-6560/ac16bd.
  • 19. Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance Evaluation of the uEXPLORER Total-Body PET/CT Scanner Based on NEMA NU 2-2018 with Additional Tests to Characterize PET Scanners with a Long Axial Field of View. J. Nucl. Med. 2021 jun;62(6):861-870. Available from: http://jnm.snmjournals.org/lookup/ doi/10.2967/jnumed.120.250597. doi: 10.2967/jnumed.120.250597.
  • 20. Prenosil GA, Sari H, Fürstner M, Afshar-Oromieh A, Shi K, Rominger A, et al. Performance Characteristics of the Biograph Vision Quadra PET/ CT System with a Long Axial Field of View Using the NEMA NU 2-2018 Standard. J. Nucl. Med. 2022 mar;63(3):476-484. Available from: http://jnm.snmjournals.org/lookup/doi/10.2967/jnumed.121.261972. doi: 10.2967/jnumed.121.261972
  • 21. Dai B, Daube-Witherspoon ME, McDonald S, Werner ME, Parma MJ, Geagan MJ, et al. Performance evaluation of the PennPET explorer with expanded axial coverage. Phys Med Biol. 2023 may;68(9):095007. Available from: https://iopscience.iop.org/article/10.1088/1361-6560/ acc722. doi: 10.1088/1361-6560/acc722.
  • 22. Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol. 2016;61(5):2025-47. doi: 10.1088/0031-9155/61/5/2025.
  • 23. van Sluis J, de Jong J, Schaar J, Noordzij W, van Snick P, Dierckx R, et al. Performance Characteristics of the Digital Biograph Vision PET/CT System. J. Nucl. Med. 2019 jul;60(7):1031-1036. Available from: http://jnm.snmjournals.org/lookup/doi/10.2967/jnumed.118.215418. doi: 10.2967/ jnumed.118.215418.
  • 24. Lecoq P. Pushing the Limits in Time-of-Flight PET Imaging. IEEE Trans. Radiat. Plasma Med. Sci. 2017 nov;1(6):473-85. Available from: https://ieeexplore.ieee.org/document/8049484/. doi: 10.1109/ TRPMS.2017.2756674.
  • 25. Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-PET: A New Technology for the Whole-body PET Imaging. Acta Phys. Pol. B. 2017;48(10):1567. Available from: http://www.actaphys.uj.edu.pl/findarticle?series=Reg&vol=48&page=1567. doi: 10.5506/ APhysPolB.48.1567.
  • 26. Kowalski P, Wiślicki W, Shopa RY, Raczyński L, Klimaszewski K, Curcenau C, et al. Estimating the NEMA characteristics of the J-PET tomograph using the GATE package. Phys Med Biol. 2018 aug;63(16):165008. Available from: https://iopscience.iop.org/article/10.1088/1361-6560/ aad29b. doi: 10.1088/1361-6560/aad29b.
  • 27. Shopa RY, Dulski K. Multi-photon time-of-flight MLEM application for the positronium imaging in J-PET. Bio-Algorithms and Med-Systems 2022 dec;18(1):135-43.
  • 28. Kansy J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 1996 may;374(2):235-44. Available from: https://linkinghub.elsevier.com/retrieve/pii/0168900296000757. doi:10.1016/0168- 9002(96)00075-7.
  • 29. Dulski K, Zgardzińska B, Białas P, Curceanu C, Czerwiński E, Gajos A, et al. Analysis Procedure of the Positronium Lifetime Spectra for the J-PET Detector. Acta Phys. Pol. 2017 nov;132(5):1637-41. Available from: http: //przyrbwn.icm.edu.pl/APP/PDF/132/app132z5p45.pdf. doi: 10.12693/APhysPolA.132.1637.
  • 30. Moskal P, Kubicz E, Grudzień G, Czerwiński E, Dulski K, Leszczyński B, et al. Developing a novel positronium biomarker for cardiac myxoma imaging. EJNMMI Phys. 2023 mar;10(22):1. Available from: https://ejnmmiphys.springeropen.com/articles/10.1186/s40658-023-00543- w. doi: 10.1186/s40658-023-00543-w.
  • 31. Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 1982 sep;27(3):213-27. Available from: https://linkinghub.elsevier. com/ retrieve/pii/0010465582901734. doi: 10.1016/0010-4655(82)90173-4.
  • 32. Kirkegaard P, Eldrup M. POSITRONFIT: A versatile program for analysing positron lifetime spectra. Comput. Phys. Commun. 1972 apr;3(3):240-55. Available from: https://linkinghub.elsevier.com/retrieve/pii/0010465572900707. doi: 10.1016/0010-4655(72)90070-7.
  • 33. Kirkegaard P, Olsen JV, Eldrup MM, Pedersen NJ. PALSfit: A computer program for analysing positron lifetime spectra. Roskilde: Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi; 2009.
  • 34. Dulski K, behalf of the J-PET collaboration O. PALS Avalanche - A New PAL Spectra Analysis Software. Acta Phys. Pol. 2020 feb;137(2):167-70. Available from: http://przyrbwn.icm.edu.pl/APP/PDF/137/app137z2p22. pdf. doi: 10.12693/APhysPolA.137.167.
  • 35. Pascual-Izarra C, Dong AW, Pas SJ, Hill AJ, Boyd BJ, Drummond CJ. Advanced fitting algorithms for analysing positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2009 may;603(3):456-66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168900209002964. doi: 10.1016/j. nima.2009.01.205.
  • 36. Qi J, Huang B. Positronium Lifetime Image Reconstruction for TOF PET. IEEE Trans Med Imaging. 2022oct;41(10):2848-55. Available from: https:// ieeexplore.ieee.org/document/9777916/. doi: 10.1109/TMI.2022.3174561.
  • 37. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2(2):164-8. Available from: https:// www.ams.org/qam/1944-02-02/S0033-569X-1944-10666-0/. doi: 10.1090/qam/10666.
  • 38. Marquardt DW. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAP. 1963 jun;11(2):431-41. Available from: http://epubs. siam.org/doi/10.1137/0111030. doi: 10.1137/0111030.
  • 39. Nelder JA, Mead R. A Simplex Method for Function Minimization. Comput J. 1965 jan;7(4):308-13. Available from: https://academic.oup.com/comjnl/ article-lookup/doi/10.1093/comjnl/7.4.308. doi: 10.1093/comjnl/7.4.308.
  • 40. Korcyl G, Hiesmayr BC, Jasinska B, Kacprzak K, Kajetanowicz M, Kisielewska D, et al. Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA SoC Devices. IEEE Trans Med Imaging. 2018 nov;37(11):2526-35. Available from: https://ieeexplore.ieee.org/document/8360475/. doi: 10.1109/TMI.2018.2837741.
  • 41. Krzemien W, Gajos A, Kacprzak K, Rakoczy K, Korcyl G. J-PET Framework: Software platform for PET tomography data reconstruction and analysis. SoftwareX. 2020 jan;11:100487. Available from: https://linkinghub.elsevier. com/retrieve/pii/S2352711020300509. doi: 10.1016/j.softx.2020.100487.
  • 42. Shepp LA, Vardi Y. Maximum Likelihood Reconstruction for Emission Tomography. IEEE Trans Med Imaging. 1982 oct;1(2):113-22. Available from: https://ieeexplore.ieee.org/document/4307558/. doi: 10.1109/ TMI.1982.4307558.
  • 43. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 1984 apr;8(2):306-16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6608535.
  • 44. Shopa RY, Baran J, Klimaszewski K, Krzemień W, Raczyński L, Wiślicki W, et al. TOF MLEM Adaptation for the Total-Body J-PET With a Realistic Analytical System Response Matrix. IEEE Trans Med Imaging. 2023 may;7(5):509-20. doi:10.1109/TRPMS.2023.3243735.
  • 45. Elzhov TV, Mullen KM, Spiess AN, Bolker B. minpack.lm:R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds; 2023. Available from: https:// cran.r-project.org/package=minpack.lm.
  • 46. Ypma J. nloptr: R Interface to NLopt; 2021. Available from: https://cran.r-project.org/package=nloptr.
  • 47. Duong T. ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R. J. Stat. Softw. 2007;21(7). Available from: http://www.jstatsoft.org/v21/i07/. doi: 10.18637/jss.v021.i07.
  • 48. Jasińska B, Gorgol M, Wiertel M, Zaleski R, Alfs D, Bednarski T, et al. Determination of the 3γ Fraction from Positron Annihilation in Mesoporous Materials for Symmetry Violation Experiment with J-PET Scanner. Acta Phys. Pol. B. 2016;47(2):453. Available from: http://www.actaphys.uj.edu.pl/findarticle?series=Reg&vol=47&page=453. doi: 10.5506/APhysPolB.47.453.
  • 49. Dulski K, Curceanu C, Czerwiński E, Gajos A, Gorgol M, Gupta-Sharma N, et al. Commissioning of the J-PET detector in view of the positron annihilation lifetime spectroscopy. Hyperfine Interact. 2018 dec;239(1):40. Available from: http://link.springer.com/10.1007/s10751-018-1517-z. doi: 10.1007/s10751-018-1517-z.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c17d241-abc9-4beb-aed3-a7fb1d3cd510
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.