PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of credit card fraudwith optimized deep neuralnetworkin balanced data condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the huge number of financial transactions, it is almost impossible forhumans to manually detect fraudulent transactions. In previous work, thedatasets are not balanced and the models suffer from overfitting problems. Inthis paper, we tried to overcome the problems by tuning hyperparameters andbalancing the dataset with a hybrid approach using under-sampling and over-sampling techniques. In this study, we have observed that these modificationsare effective in getting better performance in comparison to the existing models.The MCC score is considered an important parameter in binary classificationsince it ensures the correct prediction of the majority of positive data instancesand negative data instances. So, we emphasize on MCC score and our methodachieved an MCC score of 97.09%, which is far more (16 % approx.) than otherstate-of-the-art methods. In terms of other performance metrics, the result ofour proposed model has also improved significantly.
Wydawca
Czasopismo
Rocznik
Tom
Strony
253--276
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Assam University, Department of Electronics and Communication Engineering, Silchar788011, India
  • Assam University, Department of Electronics and Communication Engineering, Silchar788011, India
  • Assam University, Department of Electronics and Communication Engineering, Silchar788011, India
  • National Institute of Technology, Department of Electronics and Communication Engineering,Silchar, 788010, India
Bibliografia
  • [1] Abd Elrahman S.M., Abraham A.: A review of class imbalance problem, Journal of Network and Innovative Computing, vol. 1(2013), pp. 332–340, 2013.
  • [2] Adil M., Ullah R., Noor S., Gohar N.: Effect of number of neurons and layers in an artificial neural network for generalized concrete mix design, Neural Computing and Applications, pp. 1–9, 2022.
  • [3] Alkhatib K.I., Al-Aiad A.I., Almahmoud M.H., Elayan O.N.: Credit Card Fraud Detection Based on Deep Neural Network Approach. In: 2021 12th International Conference on Information and Communication Systems (ICICS), pp. 153–156, IEEE, 2021. doi: 10.1109/ICICS52457.2021.9464555.
  • [4] Asha R.B., Suresh Kumar K.: Credit Card Fraud Detection Using Artificial Neural Network, Global Transitions Proceedings, vol. 2(1), pp. 35–41, 2021. doi: 10.1016/j.gltp.2021.01.006.
  • [5] Aslam S., Herodotou H., Ayub N., Mohsin S.M.: Deep learning based techniques to enhance the performance of microgrids: a review. In: 2019 International Conference on Frontiers of Information Technology (FIT), pp. 1160–1165, IEEE, 2019. doi: 10.1109/fit47737.2019.00031.
  • [6] Brownlee J.: Dropout Regularization in Deep Learning Models with Keras, Machine Learning Mastery, vol. 20, 2016.
  • [7] Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P.: SMOTE: synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002. doi: 10.1613/jair.953.
  • [8] Chicco D., Tötsch N., Jurman G.: The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation, BioData Mining, vol. 14(1), 13, 2021. doi: 10.1186/s13040-021-00244-z.
  • [9] Dubey S.C., Mundhe K.S., Kadam A.A.: Credit card fraud detection using artificial neural network and backpropagation. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 268–273, IEEE, 2020. doi: 10.1109/iciccs48265.2020.9120957.
  • [10] Ghobadi F., Rohani M.: Cost sensitive modeling of credit card fraud using neural network strategy. In: 2016 2nd international conference of signal processing and intelligent systems (ICSPIS), pp. 1–5, IEEE, 2016. doi: 10.1109/ icspis.2016.7869880.
  • [11] Gupta T.K., Raza K.: Optimizing deep feedforward neural network architecture: A tabu search based approach, Neural Processing Letters, vol. 51, pp. 2855–2870, 2020. doi: 10.1007/s11063-020-10234-7.
  • [12] Huang G.B.: Learning capability and storage capacity of two-hidden-layer feedforward networks, IEEE Transactions on Neural Networks, vol. 14(2), pp. 274– 281, 2003. doi: 10.1109/tnn.2003.809401.
  • [13] Jabbar H., Khan R.Z.: Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study), Computer Science, Communication and Instrumentation Devices, vol. 70, 2015. doi: 10.3850/978-981-09-5247-1_017.
  • [14] Kumar M.S., Soundarya V., Kavitha S., Keerthika E.S., Aswini E.: Credit card fraud detection using random forest algorithm. In: 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), pp. 149–153, IEEE, 2019. doi: 10.1109/iccct2.2019.8824930.
  • [15] Li Z., Liu G., Wang S., Xuan S., Jiang C.: Credit Card Fraud Detection via Kernel-Based Supervised Hashing. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1249–1254, IEEE, 2018. doi: 10.1109/smartworld.2018.00217.
  • [16] Makki S., Assaghir Z., Taher Y., Haque R., Hacid M.S., Zeineddine H.: An experimental study with imbalanced classification approaches for credit card fraud detection, IEEE Access, vol. 7, pp. 93010–93022, 2019. doi: 10.1109/ access.2019.2927266.
  • [17] Mohammed R.A., Wong K.W., Shiratuddin M.F., Wang X.: Scalable Machine Learning Techniques for Highly Imbalanced Credit Card Fraud Detection: A Comparative Study. In: X. Geng, B.H. Kang (eds.), PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018, Lecture Notes in Computer Science, pp. 237–246, Springer, Cham, 2018. doi: 10.1007/978-3-319-97310-4_27.
  • [18] Mubarek A.M., Adal˘I E.: Multilayer perceptron neural network technique for fraud detection. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp. 383–387, IEEE, 2017. doi: 10.1109/ubmk.2017.8093417.
  • [19] Prusti D., Rath S.K.: Web service based credit card fraud detection by applying machine learning techniques. In: TENCON 2019-2019 IEEE Region 10 Conference (TENCON), pp. 492–497, IEEE, 2019. doi: 10.1109/tencon.2019.8929372.
  • [20] Sadgali I., Nawal S., Benabbou F.: Fraud detection in credit card transaction using machine learning techniques. In: 2019 1st International Conference on Smart Systems and Data Science (ICSSD), pp. 1–4, IEEE, 2019. doi: 10.1109/ icssd47982.2019.9002674.
  • [21] Sahin Y., Duman E.: Detecting credit card fraud by ANN and logistic regression. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications, pp. 315–319, IEEE, 2011. doi: 10.1109/inista.2011.5946108.
  • [22] Saraswathi E., Kulkarni P., Khalil M.N., Nigam S.C.: Credit card fraud prediction and detection using artificial neural network and self-organizing maps. In: 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), pp. 1124–1128, IEEE, 2019. doi: 10.1109/iccmc.2019.8819758.
  • [23] Sohony I., Pratap R., Nambiar U.: Ensemble learning for credit card fraud detection. In: CODS-COMAD ’18: Proceedings of the ACM India Joint International Conference on Data Science and Management of Data, pp. 289–294, 2018. doi: 10.1145/3152494.3156815.
  • [24] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., Salakhutdinov R.: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, The Journal of Machine Learning Research, vol. 15(56), pp. 1929–1958, 2014. http: //jmlr.org/papers/v15/srivastava14a.html.
  • [25] Taha A.A., Malebary S.J.: An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine, IEEE Access, vol. 8, pp. 25579–25587, 2020. doi: 10.1109/access.2020.2971354.
  • [26] Xinwei Z., Yaoci H., Xu W., Qili W.: HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture, Information Sciences, vol. 557, pp. 302–316, 2021. doi: 10.1016/j.ins.2019.05.023.
  • [27] Yen S.J., Lee Y.S.: Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset. In: Intelligent Control and Automation: International Conference on Intelligent Computing, ICIC 2006 Kunming, China, August 16–19, 2006, pp. 731–740, Springer, 2006.
  • [28] Yeşilkanat A., Bayram B., Köroğlu B., Arslan S.: An adaptive approach on credit card fraud detection using transaction aggregation and word embeddings. In: I. Maglogiannis, L. Iliadis, E. Pimenidis (eds.), Artificial Intelligence Applications and Innovations. AIAI 2020. IFIP Advances in Information and Communication Technology, pp. 3–14, Springer, 2020. doi: 10.1007/978-3-030-49161-1_1.
  • [29] Ying X.: An overview of overfitting and its solutions, Journal of Physics: Conference Series, vol. 1168(2), 22022, 2019. doi: 10.1088/1742-6596/1168/2/022022.
  • [30] Zamini M., Montazer G.: Credit card fraud detection using autoencoder based clustering. In: 2018 9th International Symposium on Telecommunications (IST), pp. 486–491, IEEE, 2018. doi: 10.1109/istel.2018.8661129
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c16457d-1807-425e-b3c6-6ea59b5239e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.