Tytuł artykułu
Identyfikatory
Warianty tytułu
Syjamskie sieci neuronowena tropie podobieństwa błędów w stacjach bazowych sieci komórkowych 5G
Konferencja
Multikonferencja Krajowego Środowiska Tele- i Radiokomunikacyjnego (7-9.09.2022 ; Warszawa, Polska)
Języki publikacji
Abstrakty
To improve the R&D process, by reducing duplicated bug tickets, we used an idea of composing BERT encoder as Siamese network to create a system for finding similar existing tickets. We proposed several different methods of generating artificial ticket pairs, to augment the training set. Two phases of training were conducted. The first showed that only and approximate 9% pairs were correctly identified as certainly similar. Only 48% of the test samples are found to be pairs of similar tickets. With the fine-tuning we improved that result up to 81%, proving the concept to be viable for further improvements.
Wydawca
Rocznik
Tom
Strony
198--201
Opis fizyczny
Bibliogr. 9 poz., rys., tab.
Twórcy
autor
- NOKIA, Kraków
- AGH University of Science and Technology, Institute of Telecommunications, Kraków
autor
- NOKIA, Kraków
autor
- NOKIA, Kraków
autor
- AGH University of Science and Technology, Institute of Telecommunications, Kraków
autor
- AGH University of Science and Technology, Institute of Telecommunications, Kraków
Bibliografia
- [1] 3GPP. 2021. version 17.1.0. " Vocabulary for 3GPP Specifications". 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 21.905 [Online]. Available: http://www.3gpp.org/DynaReport/21905.htm
- [2] Bojanowski Piotr et al., 2017."Enriching Word Vectors with Subword Information". Transactions of the Association for Computational Linguistics. ( 5): 135-146
- [3] Elastic. 2022. "Elasticsearch: The Officia Distributed Search & Analytics Engine". [Online]. Available: http://www.elastic.co/elasticsearch/
- [4] Devlin Jaoob et al. June 2019. "BERT: Pre-training of deep bidirectional,transformers for language understanding". Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. ( 1 ): 4171-4186. Association for Computational Linguistics.
- [5] Reimers Nils, Gurevych Iryna 2019. "Sentence-bert: Sentence embeddings using siamese bert-networks". CoRR.
- [6] Lavi Dor, Medentsiy Volodymyr, Graus David. 2021. "conSultantBERT: Fine-tuned Siamese Sentence. BERT for Matching Jobs and Job Seekers." ArXiv abs/2109.06501
- [7] Chicco Davide. 2021. "Siamese Neural Networks: An Overview". Artificial Neural Networks. Methods in Molecular Biology. (2190): 73-94.
- [8] Merchant Amil et al. 2020. " What happens to BERT embeddings during fine-tuning?", Proceedings of The Third Blackbox NLP Workshop on Analyzing and Interpreting Neural Networks for NLP. 33-44. (Online.) Available: https://aclanthology.org/2020.blackbox.nlp-1. 4
- [9] Li Wen et al. 2020. "ApproximateNearest Neighbor Search on High Dimensional Data - Experiments, Analyses, and Improvement". IEEE Transactions on Knowledge and Data Engineering. 32 (8): 1475-1488.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c150ceb-301b-42cd-9d79-2475b78a7ac1