PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metallurgical aspects of the corrosion resistance of 7000 series aluminum alloys – a review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article contains a review of selected studies conducted in the field of corrosion resistance of precipitation-hardenable 7000 series aluminum alloys. In particular, it discusses the effect of heat treatment and the role of thus formed microstructure on the corrosion behavior of these alloys. The article presents the three types of corrosion that occur most commonly in this group of materials in the context of their microstructure. It points to the importance of the chemical composition of a 7000 alloy, including the precipitates present in the microstructure, for the development of corrosion. The aluminum solid solution can act as an anode or cathode in relation to intermetallic particles. Such corrosion features may result in the destruction of the surfaces of elements made of the 7000 series aluminum alloy. It also raises the issue of the mechanism of corrosive destruction of the aluminum solid solution, which is connected with a crystallographic attack. In the case of this process, the nature of the micro-pits formed as a result of their local dissolution is related to the privileged dissolution of specific crystallographic planes and directions.
Wydawca
Rocznik
Strony
159--180
Opis fizyczny
Bibliogr. 140 poz., rys.
Twórcy
  • Wroclaw University of Science and Technology, Department of Metal Forming, Welding Technology and Metrology; ul. Łukasiewicza 7-9, 50-371 Wrocław, Poland
Bibliografia
  • [1] Dong S, Chen X, La Plante EC, Gussev M, Leonard K, Sant G. Elucidating the grain-orientation dependent corrosion rates of austenitic stainless steels. Mater Des. 2020;191:108583. doi: 10.1016/j.matdes.2020.108583
  • [2] Chen Z, Bobaru F. Peridynamic modeling of pitting corrosion damage, J Mech Phys Solids. 2015;78:352–81. doi: 10.1016/j.jmps.2015.02.015
  • [3] Niu PL, Li WY, Li N, Xu YX, Chen DL. Exfoliation corrosion of friction stir welded dissimilar 2024-to-7075 aluminum alloys. Mater Charact. 2019;147:93–100. doi: 10.1016/j.matchar.2018.11.002
  • [4] Ralston KD, Fabijanic D, Birbilis N. Effect of grain size on corrosion of high purity aluminum, Electrochim Acta. 2011;56 (4):1729–36. doi: 10.1016/j.electacta.2010.09.023
  • [5] Rifai M, Miyamoto H, Fujiwara H. Effects of strain energy and grain size on corrosion resistance of ultrafine grained Fe-20%Cr steels with extremely low C and N fabricated by ECAP. Int J Corros. 2015;2015:386865. doi: 10.1155/2015/386865
  • [6] Balusamy T, Kumar S, Sankara Narayanan TSN. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel. Corros Sci. 2010;52(11):3826–34. doi: 10.1016/j.corsci.2010.07.004
  • [7] Pisarek M, Kędzierzawski P, Janik-Czachor M, Kurzy-dłowski J. Effect of hydrostatic extrusion on the corrosion resistance of type 316 stainless steel. Corrosion. 2008;64(2):131–7. doi: 10.5006/1.3280681
  • [8] Song D, Ma A, Jiang J, Lin P, Yang D. Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP. Trans Nonferrous Met Soc China. 2009;19(5):1065–70. doi: 10.1016/S1003-6326(08)60407-0
  • [9] Wang XY, Li DY. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel. Electrochim Acta. 2002;47(24):3939–47. doi: 10.1016/S0013-4686(02)00365-1
  • [10] Ralston KD, Birbilis N, Davies CHJ. Revealing the relationship between grain size and corrosion rate of metals, Scr Mater. 2010;63(12)1201–4. doi: 10.1016/j.scriptamat.2010.08.035
  • [11] Yan J, Heckman N, Velasco L, Hodge AM. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries. Sci Rep. 2016;6:26870. doi: 10.1038/srep26870
  • [12] Tomaszow ND. Teoria korozji i ochrony metali. Warszawa: PWN—Polskie Wydawnictwo Muzyczne: 1982
  • [13] Białobrzeski A, Czekaj E, Heller M, Własściwosści korozyjne stopów aluminium i magnezu przetwarza nych technologią odlewania ciśnieniowego. Arch Foundry Eng. 2002;2(3):294–313.
  • [14] Akiyama E, Zhang Z, Watanabe Y, Tsuzaki K. Effects of severe plastic deformation on the corrosion behavior of aluminum alloys. J Solid State Electrochem. 2009;13: 277–82. doi: 10.1007/s10008-007-0496-9
  • [15] Lachowicz MM. Elektrochemiczne i mikrostrukturalne aspekty rozwoju niszczenia korozyjnego czeęci maszyn i urządzeń. Monografia, Wydawnictwo Naukowe—Instytutu Technologii Eksploatacji Sieć Badawcza Lukasiewicz Radom, Poland. 2020. ISBN 978-83-7789-620-4
  • [16] Georgantzia E, Gkantou M, Kamaris GS. Aluminium alloys as structural material: a review of research. Eng Struct. 2021;.227:111372. doi: 10.1016/j.engstruct.2020.111372
  • [17] Lachowicz MM, Pękalski G. Charakterystyka wytrzy-małościowa połączeń spawanych stopu AW 7020. Górnictwo Odkrywkowe. 2014;55(1):48–52.
  • [18] Zhou B, Liu B, Zhang S. The advancement of 7XXX series aluminum alloys for aircraft structures: a review. Metals. 2021;11:718. doi: 10.3390/met11050718
  • [19] Hosford WF. Physical Metallurgy. Boca Raton: CRC Press; 2010.
  • [20] Kairy SK, Turk S, Birbilis N, Shekhter A. The role of microstructure and microchemistry on intergranular corrosion of aluminium alloy AA7085-T7452. Corros Sci. 2018; 143:414–27. doi: 10.1016/j.corsci.2018.08. 033
  • [21] Fan X, Jiang D, Meng Q, Zhang B, Wang T. Evolution of eutectic structures in Al-Zn-Mg-Cu alloys during heat treatment. Trans Nonferrous Met Soc China. 2006;16(3):577–81. doi: 10.1016/S1003-6326(06)60101-5
  • [22] Liu JZ, Chen JH, Liu ZR, Wu CL. Fine precipitation scenarios of AlZnMg(Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part II: fine precipitation scenarios in AlZnMg(Cu) alloys Mater Charact. 2015;99:142–9. doi: 10.1016/j.matchar.2014.11.027
  • [23] Liu JZ, Chen JH, Yang XB, Ren S, Wu CL, Xu HY, Zou J. Revisiting the precipitation sequence in Al– Zn–Mg-based alloys by high-resolution transmission electron microscopy. Scr Mater. 2010;.63(11):1061–4. doi: 10.1016/j.scriptamat.2010.08.001
  • [24] Ogura T, Hirosawa S, Sato T. Quantitative characterization of precipitate free zones in Al–Zn–Mg(–Ag) alloys by microchemical analysis and nanoindentation measurement. Sci Technol Adv Mater. 2004;5(4):491–6. doi: 10.1016/j.stam.2004.02.007
  • [25] Rometsch PA, Zhang Y, Knight S. Heat treatment of 7xxx series aluminium alloys—Some recent developments, Trans Nonferrous Met Soc China. 2014;24(7):2003–17. doi: 10.1016/S1003-6326(14)63306-9
  • [26] Li J, Li F, Ma X, Li J., Liang S. Effect of grain boundary characteristic on intergranular corrosion and mechanical properties of severely sheared Al-Zn-Mg-Cu alloy. Mater Sci Eng: A. 2018;732:53–62. doi: 10.1016/j.msea.2018.06.097
  • [27] Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B. Influence of alloy composition and heat treatment on precipitate composition in Al—Zn—Mg—Cu alloys. Acta Mater. 2010;58(1):248–60. doi: 10.1016/j. actamat.2009.09.003
  • [28] Berg LK, Gjønnes J, Hansen V, Li XZ, Knutson-Wedel M, Waterloo G, et al. GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta Mater. 2001;49(17):3443–51. doi: 10.1016/S1359-6454(01)00251-8
  • [29] Kalemba I, Hamilton C, Dymek S. Natural aging in friction stir welded 7136-T76 aluminum alloy. Mater. Des. 2014;60:295–301.doi: 10.1016/j.matdes.2014.04.009
  • [30] Li S, Dong H, Shi L, Li P, Ye F. Corrosion behavior and mechanical properties of Al-Zn-Mg aluminum alloy weld. Corros Sci. 2017;123:243–55. doi: 10.1016/j.corsci.2017.05.007
  • [31] Temmar M, Hadji M, Sahraoui T. Effect of postweld aging treatment on mechanical properties of tungsten inert gas welded low thickness 7075 aluminium alloy joints. Mater Des. 2011;.32(6):3532–6. doi: 10.1016/j.matdes.2011.02.011
  • [32] Kumar S, Namboodhiri TKG. Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020. Bull Mater Sci. 2011;34(2):311–21. doi: 10.1007/s12034-011-0066-8
  • [33] Ashby MF, Jones DRH. Engineering materials 2: an introduction to microstructure and processing. Oxford: Elsevier; 2013.
  • [34] Ładak A, Cichoń M, Lachowicz MM. Evaluation of the effect of dual-stage aging and RRA on the hardening and corrosion resistance of AW7075 alloy. Corros Mater Degrad. 2022;3(1):142–59. doi: 10.3390/cmd3010008
  • [35] Li JF, Zheng ZQ, Li S.C, Chen WJ, Ren WD, Zhao XS. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys. Corros Sci. 2007;49(6):2436–49. doi: 10.1016/j.corsci.2006.12.002
  • [36] Wloka J, Hack T, Virtanen S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys. Corros Sci. 2007;49(3):1437-49. doi: 10.1016/j.corsci.2006.06.033
  • [37] Andreatta F, Terryn H, de Wit JHW. Effect of solution heat treatment on galvanic coupling between intermetallics and matrix in AA7075-T6. Corros Sci. 2003;45: 1733–46. doi: 10.1016/S0010-938X(03)00004-0
  • [38] Jha AK, Shiresha GN, Sreekumar K, Mittal MC, Ninan KN, Stress corrosion cracking in aluminium alloy AFNOR 7020-T6 water tank adaptor for liquid propulsion system. Eng Failure Anal. 2008;15(6):787–95. doi: 10.1016/j.engfailanal.2007.05.009
  • [39] Yan S, Chen H, Ma C, Nie Y, Wang X, Qin QH. Local corrosion behaviour of hybrid laser-MIG welded Al– Zn–Mg alloy joints. Mater Des. 2015;88:1353–65. doi: 10.1016/j.matdes.2015.08.140
  • [40] Birbilis N, Buchheit RG. Electrochemical characteristics of intermetallic phases in aluminum alloys; an experimental survey and discussion. J Electrochem Soc. 2005;152(4):B140–51. doi: 10.1149/1.1869984
  • [41] Birbilis N, Buchheit RG. Investigation and discussion of characteristics for intermetallic phases common to aluminum alloys as a function of solution pH. J Electrochem Soc. 2008;155(3):C117–C126. doi: 10.1149/1.2829897
  • [42] Ogura T, Hirosawa S, Cerezo A, Sato T. Atom probe tomography of nanoscale microstructures within precipitate free zones in Al–Zn–Mg(–Ag) alloys. Acta Mater. 2010;58;5714–23. doi: 10.1016/j.actamat.2010. 06.046
  • [43] Su R, Qu Y, Li X, You J, Li R. Effect of retrogression and reaging on stress corrosion cracking of spray formed Al alloy. Mater Sci Appl. 2016;7:1–7. doi: 10.4236/msa.2016.71001
  • [44] Chen S, Chen K, Peng G, Liang X, Chen X, Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy. Trans Nonferrous Met Soc China. 2012;22(1):47–52. doi: 10.1016/S1003-6326(11)61138-2
  • [45] Yang XB, Chen JH, Zhang GH, Huang LP, Fan TW, Ding Y, Yu XW. A transmission electron microscopy study of microscopic causes for localized-corrosion morphology variations in the AA7055 Al alloy. J Mater Sci Technol. 2018;34(10):1719–29. doi: 10.1016/j.jmst.2018.05.006
  • [46] Marlaud T, Malki B, Henon C, Deschamps A, Baroux B. Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn– Mg–Cu alloys, Corros Sci. 2011;53(10):3139–49. doi: 10.1016/j.corsci.2011.05.057
  • [47] Umamaheshwer Rao AC, Vasu V, Govindaraju M, Sai Srinadh KV. Stress corrosion cracking behaviour of 7xxx aluminum alloys: a literature review. Trans Nonferrous Met Soc China. 2016;26(6):1447–71. doi: 10.1016/S1003-6326(16)64220-6
  • [48] McNaughtan D, Worsfold M, Robinson MJ. Corrosion product force measurements in the study of exfoliation nd stress corrosion cracking in high strength aluminium alloys. Corros Sci. 2003;45(1):2377–89. doi: 10.1016/S0010-938X(03)00050-7
  • [49] Chen S, Chen K, Dong P, Ye S, Huang L. Effect of heat treatment on stress corrosion cracking, fracture toughness and strength of 7085 aluminum alloy. Trans Nonferrous Met Soc China. 2014;24(7):2320–5. doi: 10.1016/S1003-6326(14)63351-3
  • [50] Wang D, Ma ZY. Effect of pre-strain on microstructure and stress corrosion cracking of over-aged 7050 aluminum alloy. J Alloys Compd. 2009;469(1–2):445–50. doi: 10.1016/j.jallcom.2008.01.137
  • [51] Peng G, Chen K, Chen S, Fang H. Influence of repetitious-RRA treatment on the strength and SCC resistance of Al–Zn–Mg–Cu alloy. Mater Sci Eng: A. 2011;528(12):4014–8. doi: 10.1016/j.msea.2011.01.088
  • [52] Liu LL, Pan QL, Wang XD, Xiong SW. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy. J Alloys Compd. 2018;735:261–76. doi: 10.1016/j.jallcom.2017.11.070
  • [53] Kumar A, Chaudhari GP, Nath SK. SCC susceptibility of RRA treated high-zinc 7068 aluminum alloy. Corros Sci. 2023;220:111257. doi: 10.1016/j.corsci.2023.111257
  • [54] Vijaya Kumar P, Madhusudhan Reddy G, Srinivasa Rao K. Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone – Effect of post weld heat treatment and addition of boron carbide. Def Technol. 2015;11(2):166–73. doi: 10.1016/j.dt.2015.01.002
  • [55] Li JF, Birbilis N, Li CX., Jia ZQ, Cai B, Zheng ZQ. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150. Mater Charact. 2009;60(11):1334–41. doi: 10.1016/j.matchar.2009.06.007
  • [56] Ozer G, Karaaslan A. Properties of AA7075 aluminum alloy in aging and retrogression and reaging process. Trans Nonferrous Met Soc China. 2017;27(11):2357–62. doi: 10.1016/S1003-6326(17)60261-9
  • [57] Wang Y, Cao L, Wu X, Tong X, Liao B, Huang G, Wang Z. Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085. J Alloys Compd. 2020;814:152264, doi: 10.1016/j.jallcom.2019.152264
  • [58] Park JK, Ardell AJ. Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651. Metall Mater Trans A. 1984;15(8):1531–43. doi: 10.1007/BF02657792
  • [59] Guo F, Duan S, Wu D, Matsuda K, Wang T, Zou Y. Effect of retrogression re-aging treatment on corrosion behavior of 7055 Al-Zn-Mg alloy. Mater Res Express. 2020;7(10):106523. doi: 10.1088/2053-1591/abc191
  • [60] Krishnanunni S, Gupta RK, Ajithkumar G, Anil Kumar V, Ghosh R. Investigation on effect of optimized RRA in strength and SCC resistance for aluminium alloy AA7010. Mater Today: Proc. 2020;27(3):2385–9. doi: 10.1016/j.matpr.2019.09.136
  • [61] Lachowicz MM, Leśniewski T, Lachowicz MB. Effect of dual-stage ageing and RRA treatment on the three-body abrasive wear of the AW7075 alloy. Strojniški vestnik – J Mech Eng. 2022;68(7–8:493–505. doi: 10.5545/sv-jme.2022.142
  • [62] Wang YL, Jiang HC, Li ZM, Yan DS, Zhang D, Rong LJ. Two-stage double peaks ageing and its effect on stress corrosion cracking susceptibility of Al-Zn-Mg alloy. J Mater Sci Technol. 2018;34(7):1250–7. doi: 10.1016/j.jmst.2017.05.008
  • [63] Emani SV, Benedyk J, Nash P, Chen D. Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions. J Mater Sci. 2009;44:6384–91. doi: 10.1007/s10853-009-3879-8
  • [64] Bobby Kannan M, Bala Srinivasan P, Raja VS. Stress corrosion cracking (SCC) of aluminium alloys. In: Raja VS, Shoji T, editors. Woodhead publishing series in metals and surface engineering, stress corrosion cracking. Salt Lake City, Utah: Woodhead Publishing; 2011. p. 307–40. ISBN 9781845696733, doi: 10.1533/9780857093769.3.307
  • [65] Burleigh TD. The postulated mechanisms for stress corrosion cracking of aluminum alloys: a review of the literature 1980–1989. Corrosion. 1991;47(2):89–98. doi: 10.5006/1.3585235
  • [66] Dymek S. Nowoczesne stopy aluminium do przeróbki plastycznej. Krakow: Wydawnictwo AGH; 2012.
  • [67] Shreir LL. Corrosion, 2nd ed. Amsterdam: Newnes-Butterworth; 1976.
  • [68] Eckermann F, Suter T, Uggowitzer PJ, Afseth A, Schmutz P. Investigation of the exfoliation-like attack mechanism in relation to Al–Mg–Si alloy microstructure. Corros Sci. 2008;50:2085–93. doi: 10.1016/j.corsci.2008.04.003
  • [69] Mai W, Soghrati S, Buchheit RG. A phase field model for simulating the pitting corrosion. Corros Sci. 2016;110:157–66. doi: 10.1016/j.corsci.2016.04.001
  • [70] Lindell D, Pettersson R. Crystallographic effects in corrosion of austenitic stainless steel 316L. Mater Corros. 2015;66(8):727–32. doi: 10.1002/maco.201408002
  • [71] Shahryari A, Szpunar JA, Omanovic S, The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior. Corros Sci. 2009;51(3):677–82. doi: 10.1016/j.corsci.2008.12.019
  • [72] de Sousa Araujo JA, Donatus U, Martins Queiroz F, Terada M, Milagre MX, de Alencar MC, Costa I On the severe localized corrosion susceptibility of the AA2198-T851 alloy. Corros Sci. 2018;133:132–40. doi: 10.1016/j.corsci.2018.01.028
  • [73] Donatus U, Thompson GE, Omotoyinbo JA, Alaneme KK, Aribo S, Agbabiaka OG. Corrosion pathways in aluminum alloys. Trans Nonferrous Met Soc China. 2017;27(1):55–62. doi: 10.1016/S1003-6326(17)60006-2
  • [74] Zhang X, Zhou X, Hashimoto T, Liu B. Localized corrosion in AA2024-T351 aluminium alloy: transition from intergranular corrosion to crystallographic pitting. Mater Charact. 2017;130:230–6. doi: 10.1016/j.matchar.2017.06.022
  • [75] Treacy GM, Breslin CB. Electrochemical studies on single-crystal aluminium surfaces. Electrochim Acta. 1998;43(12–13):1715–20. doi: 10.1016/S0013-4686(97)00305-8
  • [76] Seo JH, Ryu JH, Lee DN. Formation of crystallographic etch pits during AC etching of aluminum. J Electrochem. Soc. 2003;150(9):B433–8. doi: 10.1149/1.1596952
  • [77] Jin H, Sui Y, Yu X, Feng J, Jiang Y, Wang Q, Sun W. The crystallographic orientation dependent anisotropic corrosion behavior of aluminum in 3.5 wt% NaCl solution. J Electroanalyt Chem. 2023;946:117746. doi: 10.1016/j.jelechem.2023.117746
  • [78] Schöchlin J, Bohnen KP, Ho KM. Structure and dynamics at the Al(111)-surface. Surf Sci. 1995; 324:113–21. doi: 10.1016/0039-6028(94)00710-1
  • [79] Koroleva EV, Thompson GE, Skeldon P, Noble B. Crystallographic dissolution of high purity aluminum. Pro R Soc. 2007;463:1729–48. doi: 10.1098/rspa.2007.1846
  • [80] Ghali E. General, galvanic, and localized corrosion of aluminum and its alloys. Ch. 5 in: Corrosion resistance of aluminum and magnesium alloys. RW Revie, E. Ghali, editors. Hoboken, NJ: John Wiley, 2010. doi: 10.1002/9780470531778.ch5
  • [81] Ma Y, Zhou X, Huang W, Thompson GE, Zhang X, Luo C, Sun Z. Localized corrosion in AA2099-T83 aluminum–lithium alloy: the role of intermetallic particles. Mater Chem Phys. 2015:161:201. doi: 10.1098/rspa.2007.1846210. doi: 10.1016/j.matchemphys.2015.05.037
  • [82] Huang J, Feng S, Li S, Wu C, Chen J. The crystallographic corrosion and its microstructure in an Al-Cu-Li alloy. J Alloys Compd. 2021;861:158588. doi: 10.1016/j.jallcom.2020.158588
  • [83] Donatus U, Terada M, Ospina CR, Martins Queiroz F, Santos Bugarin AF, Costa I. On the AA2198-T851 alloy microstructure and its correlation with localized corrosion behaviour. Corros Sci. 2018;131:300–9. doi: 10.1016/j.corsci.2017.12.001
  • [84] Zhang X, Zhou X, Hashimoto T, Liu B, Luo C, Sun Z, et al. Corrosion behaviour of 2A97-T6 Al-Cu-Li alloy: the influence of non-uniform precipitation. Corros Sci. 2018;132:1–8. doi: 10.1016/j.corsci.2017.12. 010
  • [85] Wang SS, Huang IW, Yang L, Jiang JT, Chen JF, Dai SL, et al. Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys. J Electrochem Soc. 2015;162(4):C150. doi: 10.1149/2.0301504jes
  • [86] Wang SS, Frankel G, Jiang JT, Chen JF, Dai SL, Zhen L. Mechanism of localized breakdown of 7000 series aluminum alloys, J Electrochem Soc. 2013;160(10):C493. doi: 10.1149/2.080310jes
  • [87] Sha G, Cerezo A. Early-stage precipitation in Al–Zn– Mg–Cu alloy (7050). Acta Mater 2004;52(15):4503–16. doi: 10.1016/j.actamat.2004.06.025
  • [88] Ji S, Yang W, Gao F, Watson D, Fan Z. Effect of iron on the microstructure and mechanical property of Al–Mg– Si–Mn and Al–Mg–Si diecast alloys. Mater Sci Eng: A. 2013;564:130–9. doi: 10.1016/j.msea.2012.11.095
  • [89] Warmuzek M. Analysis of the chemical composition of AlMnFe and AlFeMnSi intermetallic phases in the interdendritic eutectics in the Al-alloys. Prace Instytutu Odlewnictwa. 2014;R.LIV(1):7–16. doi: 10.7356/iod.2014.01
  • [90] Taylor JA. Iron-containing intermetallic phases in Al-Si based casting alloys. Proc Mater Sci. 2012;1:19–33. doi: 10.1016/j.mspro.2012.06.004
  • [91] Cao X, Campbell J. The nucleation of Fe-Rich phases on oxide films in Al-11.5Si-0.4Mg cast alloys. Metallurg Mater Trans A. 2003;34:1409–20. doi: 10.1007/s11661-003-0253-3
  • [92] Belov NA, Aksenov AA, Eskin DG. Iron in aluminum alloys: impurity and alloying element. In: Friodlyander JN, Eskin DG, editors. Advances in metallic alloys. Book series, pod red.London: Taylor & Francis; 2002.
  • [93] Bahadur A. Intermetallic phases in Al-Mn alloys. J Mater Sci. 1998;23:48–54. doi: 10.1007/BF01174033
  • [94] Mrówka-Nowotnik G, Sieniawski J, Nowotnik A. Intermetallic phase identification on the cast and heat treated 6082 aluminum alloy. Arch Metall Mater. 2006;51(4):599–603.
  • [95] Podprocka R, Bolibruchova D. Iron intermetallic phases in the alloy based on Al-Si-Mg by applying manganese. Arch Foundry Eng. 2017;17(3):217–21. doi: 10.1515/afe-2017-0118
  • [96] Warmuzek M. The AlFeMnSi intermetallics competition in the interdendritic eutectics in AlSi cast alloys influenced by cooling rate and transition metals content. Prace Instytutu Odlewnictwa. 2016;R.LVI(1):7–16. doi: 10.7356/iod.2016.02
  • [97] Irizalp SG, Saklakoglu N. Effect of Fe-rich inter-metallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy. Eng Sci Technol Int J. 2014:17(2):58–62. doi: 10.1016/j.jestch.2014.03.006
  • [98] Belmares-Perales S, Zaldívar-Cadena AA. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al–7.5Si–3.6Cu alloy. Mater Sci Eng B. 2010;174(1–3):191–5. doi: 10.1016/j.mseb.2010.03.032
  • [99] Kuijpers NCW, Vermolen FJ, Vuik C, Koenis PTG, Nilsen KE, van der Zwaag S. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements. Mater Sci Eng A. 2005;394(1–2):9–19. doi: 10.1016/j.msea.2004.09.073
  • [100] Sarafoglou PI. Serafeim A, Fanikos IA, Aristeidakis JS, Haidemenopoulos GN. Modeling of microsegregation and homogenization of 6xxx Al-alloys including precipitation and strengthening during homogenization cooling. Materials (Basel). 2019;12(9)1421. doi: 10.3390/ma12091421
  • [101] Liu Y, Huang G, Sun Y, Zhang L, Huang Z, Wang J, Liu C. Effect of Mn and Fe on the formation of Fe-and Mn-Rich intermetallics in Al-5Mg-Mn alloys solidified under near-rapid cooling. Materials (Basel). 2016;9:88. doi: 10.3390/ma9020088
  • [102] Zolotorevsky VS, Belov NA, Glazoff MA. Casting aluminium alloys. Amsterdam: Elsevier; 2007.
  • [103] Nakayasu H, Kobayashi E, Sato T, Holmestad R, Marthinsen K. Orientation relationships of phase transformation in α-Al12Mn3Si pseudomorphs after plate-like Al6Mn precipitate in an AA3004 Al-Mn based alloy. Mater Charact. 2018;136:367–74. doi: 10.1016/j.matchar.2017.12.006
  • [104] Orozco-Gonzalez P, Castro-Roman M, Lopez-Rueda J, Hernandez-Rodriguez A, Muniz-Valdez R, Luna-Alvarez S, Ortiz-Cuellar C. Effect of iron addition on the crystal structure of the α-AlFeMnSi phase formed in the quaternary Al-Fe-Mn-Si system. Rev Metal Madrid. 2011;47(6):453–61. doi: 10.3989/revmetalm.1068
  • [105] Lachowicz MM, Lachowicz MB, Gertruda A. Role of microstructure in corrosion of microchannel heat exchangers. Inżynieria Materiałowa. 2018;lR.39(*3):94–8. doi: 10.15199/28.2018.3.1
  • [106] Fratila-Apachitei LE, Apachitei I, Duszczyk J. Characterization of cast AlSi(Cu) alloys by scanning Kelvin probe force microscopy. Electrochim Acta. 2006;51(26):5892–6. doi: 10.1016/j.electacta.2006.03.027
  • [107] Linardi E, Haddad R, Lanzani L. Stability analysis of the Mg2Si phase in AA 6061 aluminum alloy. Proc Mater Sci. 2012;1:550–7. doi: 10.1016/j.mspro.2012.06.074
  • [108] Luo C, Albu SP, Zhou X, Sun Z, Zhang X, Tang Z, Thompson GE. Continuous and discontinuous localized corrosion of a 2xxx aluminium–copper–lithium alloy in sodium chloride solution. J Alloys Compd. 2016;658:61–70. doi: 10.1016/j.jallcom.2015.10.185
  • [109] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. (1980–2015). 2014;56:862–71. doi: 10.1016/j.matdes.2013.12.002
  • [110] Podrez-Radziszewska M. Weldability problems of the technical AW7020 alloy. Manuf Technol. 2011;11(11):59–66.
  • [111] Zhang K, Chen JQ, Ma PZ, Zhang XH. Effect of welding thermal cycle on microstructural evolution of Al–Zn–Mg–Cu alloy. Mater Sci Eng A. 2018;717:85–94. doi: 10.1016/j.msea.2018.01.067
  • [112] Ma T, den Ouden G. Softening behaviour of Al–Zn–Mg alloys due to welding. Mater Sci Eng: A. 1999;.266(1–2):198–204. doi: 10.1016/S0921-5093(99)00020-9
  • [113] Holzer M, Hofmann K, Mann V, Hugger F, Roth S, Schmidt M. Change of hot cracking susceptibility in welding of high strength aluminum alloy AA 7075. Phys Proc. 2016;83:463–71. doi: 10.1016/j.phpro.2016.08.048
  • [114] Kuźnicka B, Podrez-Radziszewska M. Correlation between microstructural evolution in heat affected zone and corrosion behaviour of Al-Cu alloy. Arch Metall Mater. 2008;53(3):933–8.
  • [115] Podrez-Radziszewska M, Kuźnicka B, Chęcmanowski J. Wpływ zmian mikrostruktury w strefie wpływu ciepła na zachowanie korozyjne stopu aluminium z miedzią. Inżynieria Mater. 2008;R.29(6):1032–5.
  • [116] Lachowicz MM. Odporność korozyjna złaczyspawanych stopu aluminium AW 7020. Przegląd Spawalnictwa, 2012;.R.84(8):58–63. doi:10.26628/wtr.v84i8.371
  • [117] Bocchi S, Cabrini M, D’Urso G, Giardini C, Lorenzi S, Pastore T. The influence of process parameters on mechanical properties and corrosion behavior of friction stir welded aluminum joints. J Manuf Process. 2018;35:1–15. doi: 10.1016/j.jmapro.2018.07.012
  • [118] Dudzik K, Charchalis A. Właściwości strefy spływu w złączu zgrzewanym metodą FSW stopu AW-7020. Logistyka. 2014(6):3304–11.
  • [119] Shah PH, Badheka V. Effect of various welding parameters on corrosion behavior of friction-stir-welded AA 7075-T651 alloys. MM A. 2018;7:308–20. doi: 10.1007/s13632-018-0440-7
  • [120] Podrez-Radziszewska M, Lachowicz MB, Dudziński W. Spawanie siluminów stosowanych na tarcze kół samochodowych. Przegląd Spawalnictwa. 2007;R.79(8):54–7.
  • [121] Tasak E. Metalurgia spawania. Kraków: Wydawnictwo JAK; 2008.
  • [122] Yang ZM, Yan HG, Chen JH, Su B, Zhang GH, Zhao Q. Microstructural characterisation and liquation behaviour of laser welded joint of fine grained AZ91 magnesium alloy thin sheets. Sci Technol Weld. Join. 2015;20(1):27–34. doi: 10.1179/1362171814Y.0000000252
  • [123] Oya Y, Kojima Y, Hara N. Influence of silicon on intergranular corrosion for aluminum alloys. Mater Trans. 2013;54(7):1200–8. doi: 10.2320/mater-trans.M2013048
  • [124] Jha AK, Murty SVS\N, Diwakar V, Sree Kumar K. Metallurgical analysis of cracking in weldment of propellant tank. Eng Fail Anal. 2003;10(*3):265–73. doi: 10.1016/S1350-6307(02)00073-0
  • [125] Jha AK, Shiresha GN, Sreekumar K, Mittal MC, Ninan KN. Stress corrosion cracking in alumnium alloy AFNOR 7020-T6 water tank adaptor for liquid propulsion system. Eng Fail Anal. 2008;15(6):787–795. doi: 10.1016/j.engfailanal.2007.05.009
  • [126] Hill JA, Markley T, Forsyth M, Howlett PC, Hinton BRW. Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate. J Alloys Compd. 2011;509(5):1683–90. doi: 10.1016/j.jallcom.2010.09.151
  • [127] Kim M, Brewer LN, Kubacki GW. Microstructure and corrosion resistance of chromate conversion coating on cold sprayed aluminum alloy 2024. Surf Coat Technol. 2023;460:129423, doi: 10.1016/j.surfcoat.2023.129423
  • [128] Ma IAW, Ammar S, Kumar SSA, Ramesh K, Ramesh S. A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies. J Coat Technol Res. 2022;19:241–268. doi: 10.1007/s11998-021-00547-0
  • [129] Xhanari K, Finšgar M. Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: a review. Arab J Chem. 2019;12(8):4646–63. doi: 10.1016/j.arabjc.2016.08.009
  • [130] Hosseinpour A, Abadchi MR, Mirzaee M, Tabar FA, Ramezanzadeh B. Recent advances and future perspectives for carbon nanostructures reinforced organic coating for anti-corrosion application. Surf Interfaces. 2021;23:100994. doi: 10.1016/j.surfin.2021.100994
  • [131] Khun NW, Rincon Troconis BC, Frankel GS. Effects of carbon nanotube content on adhesion strength and wear and corrosion resistance of epoxy composite coatings on AA2024-T3. Prog Org Coat. 2014;77(1):72–80. doi: 10.1016/j.porgcoat.2013.08.003
  • [132] Figueira RB, Silva CJR, Pereira EV. Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res. 2015;12:1–35. doi: 10.1007/s11998-014-9595-6
  • [133] Feng Z, Liu Y, Thompson GE, Skeldon P. Sol–gel coatings for corrosion protection of 1050 aluminium alloy. Electrochim Acta. 2010;55(10);3518–27. doi: 10.1016/j.electacta.2010.01.074
  • [134] Lachowicz MM, Winnicki M. Corrosion damage mechanisms of TiO2 cold-sprayed coatings. Arch Metall Mater., 2022;67(3):975–985. doi: 10.24425/amm.2022.139691
  • [135] Kim M, Brewer LN, Kubacki GW. Initiation and propagation of localized corrosion on cold-sprayed aluminum alloy 2024 and 7075. Corrosion. 2023;79(5):554–69. doi: 10.5006/4239
  • [136] Runge JM, Hossain T. Interfacial phenomena in 7000 series alloys and their impact on the anodic oxide. Mater Today Proc Part A. 2015;2(10):5055–62. doi: 10.1016/j.matpr.2015.10.096
  • [137] Huang H, Niu J, Xing X, Lin Q, Chen H, Qiao Y. Effects of the shot peening process on corrosion resistance of aluminum alloy: a review. Coatings. 2022;12(5):629. doi: 10.3390/coatings12050629
  • [138] Jiang J, Ma A, Song D, Yang D, Shi J, Wang K, Zhang L, Chen J. Anticorrosion behavior of ultrafine-grained Al-26 wt% Si alloy fabricated by ECAP. J Mater Sci. 2012;47:7744–50. doi: 10.1007/s10853-012-6703-9
  • [139] Brunner JG, Birbilis N, Ralston KD, Virtanen S. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024, Corros Sci. 2012;57:209–14. doi: 10.1016/j.corsci.2011.12.016
  • [140] Beura VK, Sharma A, Karanth Y, Sharma S, Solanki K. Corrosion behavior of 7050 and 7075 aluminum alloys processed by reactive additive manufacturing. Electrochim Acta. 2023;470:143357. doi: 10.1016/j.electacta.2023.143357
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c0dad5e-5432-43a0-b40d-20a48b4cfaf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.