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Multi-state systems have been found to be more flexible tool than 
binary systems for modeling engineering systems. In literature, much 
attention has been paid to multi-state system modeling. El-Neweihi et 
al. [14] provided axioms extending the standard notion of a coherent 
system to the new notion of a multistate coherent system. For such 
systems they obtained deterministic and probabilistic properties for 
system performance which are analogous to well- known results for 
coherent system reliability. Hudson and Kapur [19] presented some 
models and their applications, in terms of reliability analyses, to situ-
ations where the system and all its components have a multiple states. 
Ebrahimi [11] proposed two types of multistate coherent system and 
presented various properties related to them. Brunella and Kapur [7] 
studied a series of reliability measures and expanded their defini-
tions to be consisted with binary, multistate and continuum models. 
Kuo and Zuo [22] focused on multistate system reliability models 
and introduced several special multistate system reliability models. 
Eryılmaz [15] studied mean residual and mean past lifetime concepts 
for multistate systems. Also, for more details about multi-state system 
model one can see Andrzejczak [2] and [3].

For reliability analysis, stress-strength models are of special im-
portance. In the simplest terms, stress-strength model can be described 
as an assessment of the reliability of the component in terms of X and 
Y random variables where X is the random “stress” experienced by the 
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1. Introduction

All technical systems have been designed to perform their in-
tended tasks in a specific ambient. Some systems can perform their 
tasks in a variety of distinctive levels. A system that can have a finite 
number of performance rates is called a multi-state system. Generally 
multi-state system is consisted of components that they also can be 
multi-state. The performance rates of components can also vary as a 
result of their deterioration or in consequence of variable environmen-
tal conditions. Components failure can lead to the degradation of the 
entire multi-state system performance. 
The performance rates of the components can range from perfect 
functioning up to complete failure. The quality of the system is com-
pletely determined by components.

In some cases, the status of the system depends on the effect of 
several stresses which cause degradation. The system may not fail 
fully, but can degrade and there may exist several states of the sys-
tem. This situation corresponds to multistate systems. For an excellent 
review of multistate system we refer to Andrzejczak [1]. Indeed, a 
binary system is the simplest case of a multi-state system having two 
distinguished states; perfect functioning and completely failure. In a 
binary system, the definition domains of the states of the system and 
its components are {0,1}.
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Nowa metoda oceny niezawodności na podstawie wytrzymałości 
elementów z zastosowaniem dywergencji Kullbacka-Leiblera

The reliability of technical systems is one of the most important research subjects in the point reached by modern science. In many 
recent studies, this problem is solved by evaluation the operation performance of determined one or more components operating 
under stress. At this point, R=P(X<Y) is taken as a basis. Here, X is the stress applied on the operating component and Y is the 
strength of the component. In this study we aim to propose a new method by using Kullback-Leibler divergence for computing 
the reliability of the component under stress-strength model. The superiority of the proposed method is that when the component 
durability is equal to applied stress Kullback- Leibler divergence is equal to zero.  In addition to that when more than one stresses 
exists at the same time the formed function can include all stresses at the same time. When R is used, this is not possible because of 
stresses are evaluated separately. As Kullback-Leibler divergence is calculated depending on time, the strength of the component 
is evaluated within a dynamic structure.
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Niezawodność systemów technicznych jest jednym z najważniejszych tematów badawczych we współczesnej nauce. Wiele z ostat-
nich badań, problem ten rozwiązuje poprzez ocenę wydajności pracy jednego lub większej liczby wybranych elementów działają-
cych pod wpływem obciążenia. Za punkt wyjściowy przyjmuje się R=P(X<Y). X to obciążenie przyłożone do elementu roboczego, 
a Y to wytrzymałość elementu. W przedstawionej pracy, chcemy zaproponować nową metodę, w której do obliczania niezawodno-
ści elementu w ramach modelu typu "obciążenie-wytrzymałość" wykorzystuje się dywergencję Kullbacka-Leiblera. Proponowana 
metoda ma tę przewagę, że gdy wytrzymałość elementu jest równa przyłożonemu obciążeniu, dywergencja Kullbacka-Leiblera jest 
równa zeru. Poza tym, gdy jednocześnie występuje więcej niż jeden rodzaj obciążenia, utworzona funkcja może obejmować jedno-
cześnie wszystkie te obciążenia. Nie jest to możliwe przy zastosowaniu R, ponieważ obciążenia są oceniane oddzielnie. Ponieważ 
dywergencję Kullbacka-Leiblera oblicza się w funkcji czasu, wytrzymałość elementu ocenia się w strukturze dynamicznej.

Słowa kluczowe:	 niezawodność, model typu obciążenie-wytrzymałość, model systemu wielostanowego, dywer-
gencja Kullbacka-Leiblera.
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component and Y is the random “strength” of the component available 
to overcome the stress. From this simplified explanation, the reliabil-
ity of the component is the probability that the component is strong 
enough to overcome the stress applied on it. Then the reliability of the 
system is defined as:

	 P X Y F x dG x<( ) = ( ) ( )
∞

∫
0

,�	 (1)

where F(x) and G(x) are distribution functions of X and Y, respec-
tively. Also, for x<0, F(x)=G(x)=0.

Extensive works have been done for the reliability of the compo-
nent and its estimation under different choices for stress and strength 
distributions. Chandra and Owen [8] studied the estimation of the reli-
ability of a component where component is subject to several stresses 
whereas its strength is a single random variable. Awad and Gharraf [4] 
used a simulation study which compares minimum variance unbiased 
estimator, the maximum likelihood estimator and bayes estimator for 
R when X and Y are two independent but not identically distributed 
Burr random variables. Kotz et al. [20] presented comprehensive in-
formation about all methods and results on the stress-strength model. 
Nadarajah and Kotz [24] calculated R when X and Y are independent 
random variables from six flexible families of bivariate exponential 
distributions. Eryılmaz and İşçioğlu [16] studied multi-state systems 
in a stress-strength setup.

Traditionally, stress and strength random variables are considered 
to be both static when available data on X and Y are considered not to 
involve the time of system operation. But in real-life reliability stud-
ies, the status of a stress-strength system clearly changes dynamically 
with time. In many important applications, it is very necessary that we 
estimate the reliability of the system without waiting to observe the 
system failure. This problem may be achieved by modeling at least 
one of the stress or strength quantities as time-dependent. To pay at-
tention this problem, Basu and Ebrahimi [5] defined the random life-
time T, of the system as:

	 T t t Y t X t= ≥ ( ) ≤ ( ){ }inf : , ,�0 	 (2)

where X(t) and Y(t) denote the stress that the system is experiencing 
at time t and strength at time t, respectively. For a specific time period 
(0,t0), the reliability of a stress-strength system, R(t0), which is defined 
as the probability of surviving at time t0, follows from (2) that:

	 R t P T t0 0( ) = >( )

Reliability of a stress-strength system is a function of time. This 
function has been studied in several papers. Ebrahimi [12] investi-
gated this dynamic model on condition that the strength of the system 
Y(t) is decreasing in time. Whitmore [28], Ebrahimi and Ramallingam 
[13], Basu and Lingham [6] considered the problem of estimating the 
reliability of a system when both X(t) and Y(t) are assumed to be inde-
pendent Brownian motion processes.

In this paper, inspired by the idea of Kullback-Leibler (KL) diver-
gence, we aim to propose a new method for computing the reliability 
of the component under stress-strength model. The proposed method 
provides a simple way for determining the component operation per-
formance under more than one stresses depending on time.  

The rest of this paper is organized as four sections. Section 2 gives 
some information and properties about KL divergence. In Section 3, 
we explain the proposed method for evaluation of the component’s 
performance under the stress-strength model. Section 4 contains some 
examples to show the usefulness of the proposed method for different 

marginal lifetime distributions of the stress and strength random vari-
ables. In Section 5, we summarize what we have done in the article 
and give some conclusions.

2. KL divergence and properties

The KL divergence (or relative entropy) which introduced by 
Kullback and Leibler [21], measures the distance between the distri-
butions of random variables. If the densities p(x) and q(x) of P and Q, 
respectively, exist with respect to Lebesque measure, the KL diver-
gence DKL (P ∥ Q) of Q from P is defined as:

	 D P Q p x
p x
q x

dxKL
S

( ) = ( ) ( )
( )∫ log , 	 (3)

where S is the support set of p(x). Note that, DKL (P ∥ Q) is finite only 
if P is absolutely continuous with respect to Q, and +∞ otherwise. 
Importantly, the KL divergence remains non-negative and is known 
as Gibbs’ inequality and is zero if and only if P=Q, i.e., for any two 
distributions P and Q:

	 D P QKL ( ) ≥ 0.

Note that it is not a symmetrical quantity, that is to say:

	 DKL (P∥Q)≢DKL (Q∥P).

In information theory, machine learning and statistics, the KL di-
vergence plays an important role. The applications of its can be found 
in many areas. In literature, much attention has been paid to it. Hall 
[18] examined Discrimination Information or KL loss in the context 
of nonparametric kernel density estimation. Also, he showed that its 
asymptotic properties are profoundly influenced by tail properties 
of the kernel and of the unknown density. Dahlhaus [9] calculated 
the asymptotic KL information divergence of two locally stationary 
sequences and the limit of the Fisher information matrix. Do [10] 
proposed a fast algorithm to approximate the KL distance between 
two hidden Markov models. Rached et al. [25] provided an explicit 
computable expression for the KL divergence rate between two arbi-
trary time-invariant finite-alphabet Markov sources. Wang et al. [27] 
proposed a universal divergence estimator for absolutely continuous 
distributions P and Q based on independent and identically distributed 
samples generated from each source. In Markov-switching regression 
models, Smith et al. [26] used KL divergence between the true and 
candidate models to select the number of states and variables simul-
taneously. Lee and Park [23] considered estimation of the KL diver-
gence between the true density and a selected parametric model.

3. Proposed method

In this section, we introduce a new approach for determining the 
component operation performance where component is subject to 
X1 (t), X2(t),…, Xn(t) stresses, whereas its strength, Y(t), is a single 
random process. Let us initially assume that the stresses are inde-
pendent random processes having continuous cumulative distribution 
functions ( ) ( ){ }tF x P X t xξ ξ= ≤ , ξ=1,2,…,n and the strength has the 
marginal distribution function Gt(x)=P{Y(t)≤x}.

In our method, we first form the KL divergence 

( ) ( )( ) ( )
( )t

KL KLD Y t X t Dξ ξ=  of Xξ(t) from Y(t) by using (3) for 

ξ=1,2,…,n. After this, we calculate the ( )
( )t
KLD ξ , for selected values of 

the parameters of marginal lifetime distributions of the stress and 
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strength random variables. Using these values the operation level of 
the component, depending on the number of stresses, can be defined 
as follows:
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where tξ denotes the time when ( )
( )t
KLD ξ

 is equal to zero, ξ=1,2,…,n. 

Also using ( )
( )t
KLD ξ

 and tξ values we can define the following equa-

tions:
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where ν=1,2,..,n-1 and:
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Now with the help of the above equations, the new reliability 
score ϒ(t) for the component can be expressed as follows:

	 ( )
1

1  
jn

j t
t

jj
t j
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 
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In probabilistic design it is common to use parametric statistical 
models to compute the reliability obtained from stress-strength inter-
ference theory. In the following section we apply our method to a 
Weibull distributional example. 

4. A Weibull distributional example

In this section, we apply the proposed method to find the compo-
nent operation performance. Assume that the component is subject to 
X1(t), X2(t) and X3(t) stresses, which remain fixed over time, whereas 
its strength, Y(t), is a single random variable, which is stochastically 
decreasing in time.

A Weibull process is a useful model for events that are changing 
over time. Here, let G be a Weibull cumulative distribution function 
and its shape parameter β > 0 is constant with aging time, while its 
scale parameter α(t) decreases over time. 
Then, its cumulative distribution function can be written as:

	 ( ) ( )
1 , 0.t xG x exp x

t

β

α

   = − − >      
	 (5)

Similarly, assume that X1, X2 and X3 are Weibull random variables 
with cumulative distribution functions:

	 F x exp x xl
l

( ) = − −





















>1 0

θ

β

, ,�	 (6)

where β > 0 is the shape parameter, θl > 0 is the scale parameter of the 
distributions and l=1,2,3. Also both β and θl are constant with aging 
time.

For computing the operation performance of a component at first 
we must form KL divergence ( )

( )t
KL lD  of Xl from Y(t) for l=1,2,3. The 

KL divergence (3) can also be written for Xl (l=1,2,3) and Y(t) as:

	 ( )
( ) ( ) ( ),t

lKL lD H y x H y= − 	 (7)

where:

	 ( ) ( ) ( )
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l
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and:
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t
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g x
= ∫ 	 (9)

Here, H(y) is the differential entropy of a continuous random variable 
Y(t) with density gt (x). Let Y(t), X1, X2 and X3 are independent. Now, 
using probability density functions of (5) and (6) in (8), we have:
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By making the substitution u x
t

=
( )









α

β

 in (10) and then using fol-

lowing integral:
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log ,  te t dt C
∞

− = −∫  	 (11)
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where C≈0.577215 is the Euler’s constant ( Eq. 8.367.4 in Gradshteyn 
and Ryzhik, [17]), H(y,xl) can be obtained as:

	 H y x C t
t

l
l l

, log log .���( ) = −
( )

+ −( ) − ( )







 +

( )









β

θ
β

β
α

α
θβ

β

1 ����������������   (12)

Similarly, using probability density function of (5) in (9), we have:

	 H y
t

C t( ) = −
( ) 

+ −( ) − ( )







 +log logβ

α
β

β
αβ 1 1 	 (13)

where suitable transformations and simplifications have been applied 
and also (11) used. 

Now using (12) and (13) in (7) we have:

	 D
t
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Because of α(t) decreases over time, in (14), let α(t)=1⁄t then we have: 

	 D t
tKL l

t
l

l
( )

( ) = ( ) +



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where l=1,2,3.
Clearly, when values in Table 1 used, we have:
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where t1=100, t2=50 and t3=20. Then, for n=3 in (4), we have:

	 ϒ t
u u ut

t
t

t
t

t( ) =








 + +









 + +









χ

ζ
χ

ζ
χ

ζ1
1

1

2
2

2

3
3

3
1 2  , 	 (16)

where ( )
( )sup ; 1, 2, 3t

l KL lu D l= = ,

ζ ζt

KL
t

t

KL
tD t D

1
1

2
2

0

50 100

0

2
=

< ≤












=
( )

( )
( )

( ),

,

,

,
;

otherwise

00 50

0

20
3

3< ≤
=

≤



















( )
( )

t D t

t

KL
t

otherwise otherwise
;

,

,
,ζ






and:

	 χ
ζ

ζ

χ
ζ

ζ

χ
ζ

ζ
t

t

t

t

t

t

t

t

t

1

1

1

2

2

2

3

31

0

0

0

1

0

0

0

1

0

0
=

>

=









=
>

=

=
>,

,
;

,

,
;

,

, 33 0=


















.

Finally, using (16) for t=5,10,..,100 we can obtain the new reliability 
score presented in Table 2 for the component under stress-strength 
setup.

It can be observed from numerical values in Table 1 how stresses 
affect the performance of the component that operates under different 
parameters. When the component starts working, its strength is great-
er than all stresses. However, because the component’s strength is de-
creasing depending on the selected time, as the uptime increases at 
first the KL divergence DKL

t
3( )

( )  decreases to near zero. In this period, 

the strength of the component will begin to move to the good position 
declined from a perfect position. From the moment that DKL

t
3( )

( ) =0, 

the component will pass to the good working period from a perfect 
working period, the KL divergence DKL

t
3( )

( )  is not considered and in-

stead of the KL divergence DKL
t

2( )
( )  is taken into account. The KL di-

vergence DKL
t

2( )
( )  will be reduced again depending on the time. From 

the moment it is equal to zero, the component will pass to the average 
working period from a good working period, the KL divergence 

DKL
t

2( )
( )  is not considered and instead of the KL divergence DKL

t
1( )

( )  is 

taken into account. The KL divergence DKL
t

1( )
( )  will be reduced again 

depending on the time. From the moment it is equal to zero, the op-
eration of the component will end and because the component’s dura-
bility remains weak in three stresses the component will be impaired. 

In stress-strength model which is designed as a theoretically, when 
the component’s strength remains weak in three stresses the compo-
nent is fail. Let us consider all stresses, by using (1), a joint reliability 
is not calculated but instead the reliability is calculated separately ac-
cording to the stresses.

Table 1.	 Numerical values obtained from Equation (15) for β=0.9, θ1=0.01, 
θ2=0.02 and θ3=0.05

t DKL
t

1( )
( ) DKL

t
2( )

( ) DKL
t

3( )
( )

5 11.126 4.870 1.234

10 4.870 1.808 0.242

15 2.807 0.871 0.036

20 1.808 0.456            0.

25 1.234 0.242 0.018

30 0.871 0.123 0.059

35 0.627 0.057 0.107

40 0.456 0.021 0.159

45 0.333 0.004 0.211

50 0.242            0. 0.263

55 0.174 0.003 0.312

60 0.123 0.012 0.360

65 0.085 0.025 0.406

70 0.057 0.041 0.451

75 0.036 0.059 0.493

80 0.021 0.078 0.534

85 0.011 0.097 0.574

90 0.004 0.118 0.611

95 0.001 0.138 0.648

100            0. 0.159 0.683
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5. Conclusion

In the study, it is theoretically assumed that a component operates 
under n different stresses and when the component’s strength remains 
weak in all stresses the component is fail. Here, for reliability evalu-
ation we provide a new approach for obtaining the component opera-
tion performance. The proposed method described here is a simple 
and can clearly show the chance of component operation perform-
ance depending on time while under all stresses. The evaluation of the 
component operation performance naturally depends on the probabil-
ity distributions of stresses and selection of probability distribution of 
component strength. The method used in the study does not originally 
depend on probability distribution. Reliability function is a parametric 
method, but the reliability score proposed from this aspect is nonpara-
metric method for the component. When different effect functions are 
used instead of probability functions of stress and strength, the recom-
mended method can be easily used.

Table 2.	 New reliability score for the component when β=0.9, θ1=0.01, 
θ2=0.02 and θ3=0.05

t ϒ(t) t ϒ(t)

5 3. 55 0.0156

10 2.1961 60 0.0110

15 2.0291 65 0.0076

20 2. 70 0.0051

25 1.0496 75 0.0032

30 1.0252 80 0.0018

35 1.0117 85 0.0009

40 1.0043 90 0.0003

45 1.0008 95 0.00008

50 1. 100 0.
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