PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Single-channel EEG processing for sleep apnea detection and differentiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sleep apnea syndrome is a common sleep disorder. Detection of apnea and differentiation of its type: obstructive (OSA), central (CSA) or mixed is important in the context of treatment methods, however, it typically requires a great deal of technical and human resources. The aim of this research was to propose a quasi-optimal procedure for processing single-channel electroencephalograms (EEG) from overnight recordings, maximizing the accuracy of automatic apnea or hypopnea detection, as well as distinguishing between the OSA and CSA types. The proposed methodology consisted in processing the EEG signals divided into epochs, with the selection of the best methods at the stages of preprocessing, extraction and selection of features, and classification. Normal breathing was unmistakably distinguished from apnea by the k-nearest neighbors (kNN) and an artificial neural network (ANN), and with 99.98% accuracy by the support vector machine (SVM). The average accuracy of multinomial classification was: 82.29%, 83.26%, and 82.25% for the kNN, SVM and ANN, respectively. The sensitivity and precision of OSA and CSA detection ranged from 55 to 66%, and the misclassification cases concerned only the apnea type.
Rocznik
Strony
323--336
Opis fizyczny
Bibliogr. 44 poz., tab.
Twórcy
  • Department of Electronic and Photonic Metrology, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Electronic and Photonic Metrology, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
  • [1] American Sleep Disorders Association. (2001). The International Classification of Sleep Disorders, Revised: Diagnostic and Coding Manual. Chicago, IL: American Academy of Sleep Medicine.
  • [2] Kokkalas, L., Korompili, G., Tatlas, N. A., Mitilineos, S. A., & Potirakis, S. M. (2021). Severe obstructive sleep apnea event detection from EEG recordings. In 2nd International Electronic Conference on Applied Sciences: Proceedings, 15, 31.
  • [3] Berry, R. B., Brooks, R., Gamaldo, C., Harding, S. M., Lloyd, R. M., Quan, S. F., ... & Vaughn, B. V. (2017). AASM scoring manual updates for 2017 (version 2.4). Journal of Clinical Sleep Medicine, 13(5), 665-666. https://doi.org/10.5664/jcsm.6576
  • [4] Coito, A. L., Belo, D., Paiva, T., & Sanches, J. M. (2010, October 29). EEG spectral power changes before, during and after obstructive sleep apnea [Poster presentation]. 16th Portuguese Conference on Pattern Recognition.
  • [5] Zhou, G., Pan, Y., Yang, J., Zhang, X., Guo, X., & Luo, Y. (2020). Sleep electroencephalographic response to respiratory events in patients with moderate sleep apnea-hypopnea syndrome. Frontiers in Neuroscience, 14, 310. https://doi.org/10.3389/fnins.2020.00310
  • [6] Simms, T., Brijbassi, M., Montemurro, L. T., & Bradley, T. D. (2013). Differential timing of arousals in obstructive and central sleep apnea in patients with heart failure. Journal of Clinical Sleep Medicine, 9(8), 773-779. https://doi.org/10.5664/jcsm.2918
  • [7] Almuhammadi, W. S., Aboalayon, K. A., & Faezipour, M. (2015, May). Efficient obstructive sleep apnea classification based on EEG signals. In 2015 Long Island Systems, Applications and Technology (pp. 1-6). IEEE. https://doi.org/10.1109/LISAT.2015.7160186
  • [8] Ahmed, F., Paromita, P., Bhattacharjee, A., Saha, S., Azad, S., & Fattah, S. A. (2016, December). Detection of sleep apnea using sub-frame based temporal variation of energy in beta band in EEG. In 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) (pp. 258-261). IEEE. https://doi.org/10.1109/WIECON-ECE.2016.8009131
  • [9] Saha, S., Bhattacharjee, A., Ansary, M. A. A., & Fattah, S. A. (2016, November). An approach for automatic sleep apnea detection based on entropy of multi-band EEG signal. In 2016 IEEE Region 10 Conference (TENCON) (pp. 420-423). IEEE. https://doi.org/10.1109/TENCON.2016.7848033
  • [10] Shahnaz, C., & Minhaz, A. T. (2016, December). Sleep apnea frame detection based on empirical mode decomposition of delta wave extracted from wavelet of EEG signals. In 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) (pp. 233-236). IEEE. https://doi.org/10.1109/WIECON-ECE.2016.8009125
  • [11] Taran, S., & Bajaj, V. (2019). Sleep apnea detection using artificial bee colony optimize Hermite basis functions for EEG signals. IEEE Transactions on Instrumentation and Measurement, 69(2), 608-616. https://doi.org/10.1109/TIM.2019.2902809
  • [12] Bhattacharjee, A., Fattah, S. A., Zhu, W. P., & Ahmad, M. O. (2018). VMD-RiM: Rician modeling of temporal feature variation extracted from variational mode decomposed EEG signal for automatic sleep apnea detection. IEEE Access, 6, 77440-77453. https://doi.org/10.1109/ACCESS.2018.2883062
  • [13] Jiang, D., Ma, Y., & Wang, Y. (2018, October). A multi-scale parallel convolutional neural network for automatic sleep apnea detection using single-channel EEG signals. In 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp. 1-5). IEEE. https://doi.org/10.1109/CISP-BMEI.2018.8633132
  • [14] Prucnal, M. A., & Polak, A. G. (2018, July). Analysis of features extracted from EEG epochs by discrete wavelet decomposition and Hilbert transform for sleep apnea detection. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 287-290). IEEE. https://doi.org/10.1109/EMBC.2018.8512201
  • [15] Prucnal, M. A., & Polak, A. G. (2019, July). Effectiveness of sleep apnea detection based on one vs. two symmetrical EEG channels. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4056-4059). IEEE. https://doi.org/10.1109/EMBC.2019.8856632
  • [16] Vimala, V., Ramar, K., & Ettappan, M. (2019). An intelligent sleep apnea classification system based on EEG signals. Journal of Medical Systems, 43(2), 1-9. https://doi.org/10.1007/s10916-018-1146-8
  • [17] Wang, Y., Ji, S., Yang, T., Wang, X., Wang, H., & Zhao, X. (2020). An efficient method to detect sleep hypopnea-apnea events based on EEG signals. IEEE Access, 9, 641-650. https://doi.org/10.1109/ACCESS.2020.3038486
  • [18] Wang, Y., Yang, T., Ji, S., Wang, X., Wang, H., Wang, J., & Zhao, X. (2021). A robust sleep apnea-hypopnea syndrome automated detection method based on fuzzy entropy using single lead-EEG signals. https://doi.org/10.21203/rs.3.rs-558448/v1
  • [19] Khan, I. A., Mahmud, T. I., Mahmud, T., & Fattah, S. A. (2020, December). Deep convolutional neural network based sleep apnea detection scheme using spectro-temporal subframes of EEG signal. In 2020 11th International Conference on Electrical and Computer Engineering (ICECE) (pp. 463-466). IEEE. https://doi.org/10.1109/ICECE51571.2020.9393059
  • [20] Mahmud, T., Khan, I. A., Mahmud, T. I., Fattah, S. A., Zhu, W. P., & Ahmad, M. O. (2021). Sleep apnea detection from variational mode decomposed EEG signal using a hybrid CNN-BiLSTM. IEEE Access, 9, 102355-102367. https://doi.org/10.1109/ACCESS.2021.3097090
  • [21] Alimardani, M., & de Moor, G. (2021). Automatic classification of sleep apnea type and severity using EEG signals. In BIODEVICES (pp. 121-128). https://doi.org/10.5220/0010288301210128
  • [22] Bello, S. A., & Alqasemi, U. (2021). Computer aided detection of obstructive sleep apnea from EEG signals. Available at SSRN 3890660. https://doi.org//10.2139/ssrn.3890660
  • [23] Gurrala, V., Yarlagadda, P., & Koppireddi, P. (2021). Detection of sleep apnea based on the analysis of sleep stages data using single channel EEG. Traitement du Signal, 38(2). https://doi.org/10.18280/ts.380221
  • [24] Jayaraj, R., & Mohan, J. (2021). Classification of sleep apnea based on sub-band decomposition of EEG signals. Diagnostics, 11(9), 1571. https://doi.org/10.3390/diagnostics11091571
  • [25] Barnes, L. D., Lee, K., Kempa-Liehr, A. W., & Hallum, L. E. (2022). Detection of sleep apnea from single-channel electroencephalogram (EEG) using an explainable convolutional neural network (CNN). PLOS one, 17(9), e0272167. https://doi.org/10.1101/2021.04.11.439385
  • [26] Bhalerao, S. V., & Pachori, R. B. (2022). Sparse spectrum based swarm decomposition for robust nonstationary signal analysis with application to sleep apnea detection from EEG. Biomedical Signal Processing and Control, 77, 103792. https://doi.org/10.1016/j.bspc.2022.103792
  • [27] Chatterjee, A., & Jana, N. D. (2022, July). Classification of sleep apnea event type using imbalanced labelled EEG signal. In 2022 IEEE Region 10 Symposium (TENSYMP) (pp. 1-6). IEEE.
  • [28] Khursheed, M. D., Parveen, S., & Farooq, O. (2022, September). Machine learning based system for sleep apnea classification using EEG signal. In 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA) (pp. 1-5). IEEE.
  • [29] Cheng, L., Luo, S., Li, B., Liu, R., Zhang, Y., & Zhang, H. (2023). Multiple-instance learning for EEG based OSA event detection. Biomedical Signal Processing and Control, 80, 104358.
  • [30] Prucnal, M. A., & Polak, A. G. (2019). Comparison of information on sleep apnoea contained in two symmetric EEG recordings. Metrology and Measurement Systems, 26(2). https://doi.org/10.24425/mms.2019.128351
  • [31] Gupta, R., Zaidi, T. F., & Farooq, O. (2020, November). Automatic detection of sleep apnea using sub-band features from EEG signals. In 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS) (pp. 1-4). IEEE. https://doi.org/10.1109/ICSPIS51252.2020.9340133
  • [32] Zhao, X., Wang, X., Yang, T., et al. (2021). Classification of sleep apnea based on EEG sub-band signal characteristics. Scientific Reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-85138-0
  • [33] Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), e215-e220. http://circ.ahajournals.org/cgi/content/full/101/23/e215
  • [34] Zhang, X., Yao, L., Zhang, D., Wang, X., Sheng, Q. Z., & Gu, T. (2017, November). Multi-person brain activity recognition via comprehensive EEG signal analysis. In Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (pp. 28-37). https://doi.org/10.1145/3144457.3144477
  • [35] Bayatfar, S., Seifpour, S., Oskoei, M. A., & Khadem, A. (2019, April). An automated system for diagnosis of sleep apnea syndrome using single-channel EEG signal. In 2019 27th Iranian Conference on Electrical Engineering (ICEE) (pp. 1829-1833). IEEE. https://doi.org/10.1109/IranianCEE.2019.8786667
  • [36] Deepa, V. B., & Thangarajs, P. (2011). A study on classification of EEG Data using the Filters. IJACSA (4). https://doi.org/10.14569/IJACSA.2011.020415
  • [37] Lin, R., Lee, R. G., Tseng, C. L., Zhou, H. K., Chao, C. F., & Jiang, J. A. (2006). A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks. Biomedical Engineering: Applications, Basis and Communications, 18(03), 138-143. https://doi.org/10.4015/S1016237206000233
  • [38] Dragomiretskiy, K., & Zosso, D. (2013). Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3), 531-544. https://doi.org/10.1109/TSP.2013.2288675
  • [39] Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226-1238. https://doi.org/10.1109/TPAMI.2005.159
  • [40] Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of ReliefF and RReliefF. Machine learning, 53(1), 23-69. https://doi.org/10.1023/A:1025667309714
  • [41] Prasath, V. B., Alfeilat, H. A. A., Hassanat, A., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., & Salman, H. S. E. (2017). Distance and similarity measures effect on the performance of k-nearest neighbor classifier - a review. arXiv preprint arXiv:1708.04321. https://doi.org/10.1089/big.2018.0175
  • [42] Saccá, V., Campolo, M., Mirarchi, D., Gambardella, A., Veltri, P., & Morabito, F. C. (2018). On the classification of EEG signal by using an SVM based algorithm. In Multidisciplinary Approaches to Neural Computing (pp. 271-278). Springer, Cham. https://doi.org/10.1007/978-3-319-56904-8_26
  • [43] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 5(4), 455. https://doi.org/10.1007/BF02551274
  • [44] Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427-437. https://doi.org/10.1016/j.ipm.2
Uwagi
1. Research supported by the Grant no. 0402/0148/18 from the Ministry of Science and Higher Education, Poland.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c08418c-df11-458e-a0ba-68ec66c5480d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.