PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Does melatonin improve the yield attributes of field-droughted banana under Egyptian semi-arid conditions?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drought is regarded as one of the environmental constraints threatening agriculture worldwide. Melatonin is a pleiotropic molecule prevalent in plants capable of promoting plant endogenous resilience to many environmental challenges including drought. Banana is an important staple food consumed in developing countries especially in Africa. In this research, we studied the role of melatonin in the growth of bananas subjected to drought under the Egyptian semi-arid conditions. To achieve this objective, a field experiment on banana (Musa spp., cv. Williams) mother plants and first ratoon was conducted on a private farm for two seasons - 2019 and 2020. Three irrigation treatments, 100, 90 and 80% irrigation water requirements (IWR) were used in conjunction with four concentrations of melatonin as a foliar spray (0 μmol, 40 μmol, 60 μmol, and 80 μmol) to determine the effect of both treatments on banana plant performance under drought. The results showed that there was a substantial difference between treatments, with the foliar application of melatonin at 80 μmol concentration improving most of the yield attributes, relative water content, total chlorophyll and proline with water deficit. However, the foliar application of the molecule lowered the biochemical characteristics mostly at 80% IWR under the Egyptian semi-arid conditions. Overall, there was a concentration-dependent response with regards to IWR for the two seasons 2019 and 2020.
Wydawca
Rocznik
Tom
Strony
221--231
Opis fizyczny
Bibliogr. 60 poz., tab., wykr.
Twórcy
  • National Research Centre (NRC), Agriculture and Biology Research Institute, Water Relations and Field Irrigation Department, Postal Code, 12622, 33 El Buhouth St, Dokki, Giza, Egypt
  • National Research Centre (NRC), Agriculture and Biology Research Institute, Water Relations and Field Irrigation Department, Postal Code, 12622, 33 El Buhouth St, Dokki, Giza, Egypt
  • Nile University of Nigeria, Department of Microbiology and Biotechnology, Abuja, Nigeria
  • National Research Centre (NRC), Agriculture and Biology Research Institute Plant BioChemistry Department, Dokki, Giza, Egypt
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Poland
  • National Research Centre (NRC), Agriculture and Biology Research Institute, Pomology Department, Dokki, Giza, Egypt
autor
  • Tanta University, Faculty of Agriculture, Department of Horticulture, Tanta, Egypt
  • Tanta University, Faculty of Agriculture, Department of Horticulture, Tanta, Egypt
Bibliografia
  • AFREEN F., ZOBAYED S.M.A., KOZAI T. 2006. Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. Journal of Pineal Research. Vol. 41 p. 108–115. DOI 10.1111/j.1600-079X.2006.00337.x.
  • AHMAD S., MUHAMMAD I., WANG Y., ZEESHAN M., YANG L., ZHOU X.B. 2021. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biology. Vol. 21, 368. DOI 10.1186/s12870-021-03160-w.
  • ALLEN R.G., PEREIRA L.S., RAES D., SMITH M. 1998. Crop evapotranspiration – Guidelines for computing crop water requirements [online]. FAO Irrigation and Drainage Paper. No. 56. Rome. FAO. ISBN ISBN 92-5-104219-5 pp. 300. [Access 10.12.2021]. Available at: https://www.fao.org/3/x0490e/x0490e00.htm
  • ARNAO M.B., HERNÁNDEZ-RUIZ J. 2007. Melatonin in plants: more studies are necessary. Plant Signaling & Behavior. Vol. 2 p. 381–382. DOI 10.4161/PSB.2.5.4260.
  • ARNAO M.B., HERNÁNDEZ-RUIZ J. 2014. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science. Vol. 19 p. 789–797. DOI 10.1016/j.tplants.2014.07.006.
  • ASHRAF M., AKRAM N.A., AL-QURAINY F, FOOLAD M.R. 2011. Drought tolerance: Roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy. Vol. 111 p. 249–296. DOI 10.1016/B978-0-12-387689-8.00002-3.
  • AYYAZ A., FAROOQ M.A., DAWOOD M., MAJID A., JAVED M., ATHAR H.U. R., BANO H., ZAFAR Z.U. 2021. Exogenous melatonin regulates chromium stress-induced feedback inhibition of photosynthesis antioxidative protection in Brassica napus cultivars. Plant Cell Reports. Vol. 40(11) p. 2063–2080. DOI 10.1007/s00299-021-02769-3.
  • BALLESTER C., ZARCO-TEJADA P.J., NICOLÁS E., A LARCÓN J.J., FERERES E., INTRIGLIOLO D.S., GONZALEZ-DUGO V. 2018. Evaluating the performance of xanthophyll, chlorophyll and structure-sensitive spectral indices to detect water stress in five fruit tree species. Precision Agriculture. Vol. 19 p. 178–193. DOI 10.1007/s11119-017-9512-y.
  • BANO H., ATHAR H.U.R., ZAFAR Z.U., OGBAGA C.C., ASHRAF M. 2021. Peroxidase activity and operation of photo protective komponent of NPQ play key roles in drought tolerance of mung bean [Vigna radiata (L.) Wilcziek]. Physiologia Plantarum. Vol. 172(2) p. 603–614.
  • BATES L.S., WALDREN R.P., TEARE I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. Vol. 39 p. 205–207. DOI 10.1007/BF00018060.
  • BOLAT I., DIKILITAS M., ERCISLI S., IKINCI A., TONKAZ T. 2014. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. The Scientific World Journal. Vol. 2014, 769732. DOI 10.1155/2014/769732.
  • CHAPMAN H.D., PRATT P.F. 1961. Methods of analysis for soils, plants and waters. 1st edn. Los Angeles. University of California pp. 309.
  • CHAVES M.M., MAROCO J.P., PEREIRA J.S. 2003. Understanding plant responses to drought – From genes to the whole plant. Functional Plant Biology. Vol. 30 p. 239–264. DOI 10.1071/FP02076.
  • ÇOLAK A.M. 2018. Effect of melatonin and gibberellic acid foliar application on the yield and quality of Jumbo blackberry species. Saudi Journal of Biological Sciences. Vol. 25 p. 1242–1246. DOI 10.1016/J.SJBS.2018.06.008.
  • CoStat Statistical Software 1990. Microcomputer program analysis version 4.20. CoHort Software, Berkeley, CA.
  • DUNCAN D.B. 1955. Multiple range and multiple “F” tests. Biometrics. Vol. 11 p. 1–42.
  • EL NAMAS A.E. 2020. Effect of deficit irrigation and biochar application on growth, yield components, water use efficiency and water productivity of banana (Musa sapientum) grown in sandy soil under drip irrigation. Journal of Soil Sciences and Agricultural Engineering. Vol. 11 p. 163–175.
  • FAOSTAT 2020. Crops and livestock products [online]. FAO Statistics. Rome, Italy. Food and Agriculture Organization of the United Nations (FAO). [Access 21.12.2021]. Available at: https://www.fao.org/faostat/en/#data/QCL
  • FLETA-SORIANO E., DIAZ L., BONET E., MUNNE-BOSCH S. 2017. Melatonin may exert a protective role against drought stress in maize. Journal of Agronomy and Crop Science. Vol. 203 p. 286–294. DOI 10.1111/jac.12201.
  • GARG A.K., KIM J., OWENS T.G., RANWALA A.P., CHOI Y.D., KOCHIAN L.V., WU R.J. 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences. Vol. 99 p. 15898–15903. DOI 10.1073/pnas.252637799.
  • GHOLAMI M., RAHEMI M., KHOLDEBARIN B., RASTEGAR S. 2012. Biochemical responses in leaves of four fig cultivars subjected to water stress and recovery. Scientia Horticulturae. Vol. 148 p. 109–117. DOI 10.1016/J.SCIENTA.2012.09.005.
  • HEATH R.L., PACKER L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics. Vol. 125 p. 189–198. DOI 10.1016/0003-9861(68)90654-1.
  • HELALY M.N., EL-HOSEINY H.M., ELSHEERY N.I., KALAJI H.M., SANTOS-VILLALOBOS S.D.L., WRÓBEL J., HASSAN I.F., GABALLAH M.S., ABDELRHMAN L.A., MIRA A.M., ALAM-ELDEIN S.M. 2022. 5-Aminolevulinic acid and 24-epibrassinolide improve the drought stress resilience and productivity of banana plants. Plants. Vol. 11(6), 743. DOI 10.3390/plants11060743.
  • HERNÁNDEZ-RUIZ J., CANO A., ARNAO M.B. 2005. Melatonin acts as a growth-stimulating compound in some monocot species. Journal of Pineal Research. Vol. 39 p. 137–142. DOI 10.1111/j.1600-079X.2005.00226.x.
  • ISLAM F.H., ABOU LEILA B., GABALLAH M., EL W AKEEL H. 2019. Effect of antioxidants on Citrus leaf anatomical structure grown under saline irrigation water. Plant Archives. Vol. 19. Suppl. 1 p. 840–845.
  • ISLAM F.H., GABALLAH M.S., GOMAA A.M. 2020. Effect of short-term deficit irrigation on fruit quality and yield of “crimson seedless” grown under semi-arid conditions. Plant Archives. Vol. 20 p. 9170–9174.
  • JAFARI M., SHAHSAVAR A. 2021. The effect of foliar application of melatonin on changes in secondary metabolite contents in two citrus species under drought stress conditions. Frontiers in Plant Science. Vol. 12 p. 1509. DOI 10.3389/FPLS.2021.692735/BIBTEX.
  • KABIRI R., HATAMI A., OLOUMI H., NAGHIZADEH M., NASIBI F., TAHMASEBI Z. 2018. Foliar application of melatonin induces tolerance to drought stress in Moldavian balm plants (Dracocephalum moldavica) through regulating the antioxidant system. Folia Horticulture. Vol. 30 p. 155–167. DOI 10.2478/fhort-2018-0016.
  • KALLARACKAL J., MILBURN J., BAKER D. 1990. Water relations of the banana. III. Effects of controlled water stress on water potential, transpiration, photosynthesis and leaf growth. Australian Journal of Plant Physiology. Vol. 17 p. 79. DOI 10.1071/pp9900079.
  • KELLER J., BLIESNER R.D. 1990. Sprinkler and trickle irrigation. New York. An Avi Book Chapman Hall. ISBN 0442246455 pp. 629.
  • KARMELI D., KELLER J. 1975. Trickle irrigation design (No. 04; TC805, K3). Glendora, CA. Rain Bird Sprinkler Manufacturing Corporation.
  • LAXA M., LIEBTHAL M., TELMAN W., CHIBANI K., DIETZ K.-J. 2019. The role of the plant antioxidant system in drought tolerance. Antioxidants. Vol. 8, 94. DOI 10.3390/ANTIOX8040094.
  • LI C., TAN D.X., LIANG D., CHANG C., J IA D., M A F. 2015. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany. Vol. 66 p. 669–680. DOI 10.1093/JXB/ERU476.
  • LI C., WANG P., WEI Z., LIANG D., LIU C., YIN L., JIA D., FU M., MA F. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research. Vol. 53 p. 298–306. DOI 10.1111/J.1600-079X.2012.00999.X.
  • LI X., BRESTIC M., TAN D-X., ZIVCAK M., ZHU X., LIU S., SONG F., REITER R.J., LIU F. 2018. Melatonin alleviates low PS I-limited carbon assimilation under elevated CO 2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. Journal of Pineal Research. Vol. 64, e12453. DOI 10.1111/JPI.12453.
  • LIANG D., NI Z., XIA H., XIE Y., LV X., WANG J., LIN L., DENG Q., LUO X. 2019. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Scientia Horticulturae. Vol. 246 p. 34–43. DOI 10.1016/j.scienta.2018.10.058.
  • LIU J., WANG W., WANG L., SUN Y. 2015. Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regulation. Vol. 77 p. 317–326. DOI 10.1007/s10725-015-0066-6.
  • MOUSTAFA-FARAG M., MAHMOUD A., ARNAO M.B., SHETEIWY M.S., DAFEA M., SOLTAN M., ELKELISH A., HASANUZZAMAN M., A I S. 2020. Melatonin-induced water stress tolerance in plants: Recent advances. Antioxidants. Vol. 9, 809. DOI 10.3390/anti-ox9090809.
  • MURRAY D.B. 1960. Deficiency symptoms of the major elements in the banana. Tropical Agriculture. Vol. 36. No. 2 p. 100–107.
  • NAWAZ K., CHAUDHARY R., SARWAR A., AHMAD B., GUL A., HANO C., ABBASI B.H., ANJUM S. 2020. Melatonin as master regulator In plant growth, development and stress alleviator for sustainable agricultural production: Current status and future perspectives. Sustainability. Vol. 13, 294. DOI 10.3390/SU13010294.
  • SAINI R.S. 2001. Laboratory manual of analytical techniques in horticulture. Jodhpur. Agrobios (India) pp. 23.
  • SARROPOULOU V., DIMASSI-THERIOU K., THERIOS I., KOUKOURIKOU-PETRIDOU M. 2012. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiology and Biochemistry. Vol. 61 p. 162–168. DOI 10.1016/J.PLAPHY.2012.10.001.
  • SHAHZADI A.K., BANO H., OGBAGA C.C., AYYAZ A., PARVEEN R., ZAFAR Z. U., ASHRAF M. 2021. Coordinated impact of ion exclusion, antioxidants and photosynthetic potential on salt tolerance of ridge gourd [Luffa acutangula (L.) Roxb.]. Plant Physiology and Biochemistry. Vol. 167 p. 517–528.
  • SHARMA A., ZHENG B. 2019. Melatonin mediated regulation of drought stress: Physiological and molecular aspects. Plants. Vol. 8. DOI 10.3390/plants8070190.
  • SURENDAR K.K., DEVI D.D., RAVI I., JEYAKUMAR P., VELAYUDHAM K. 2013a. Studies on the impact of water deficit on morphological, physiological and yield of banana (Musa spp.) cultivars and hybrids. International Journal of Agricultural Sciences. Vol. 3(4) p. 473–482.
  • SURENDAR K.K., RAJENDRAN V., DEVI D.D., JEYAKUMAR P., RAVI I., VELAYUDHAM K. 2013b. Impact of water deficit on growth attributes and yields of banana cultivars and hybrids. African Journal of Agricultural Research. Vol. 8 p. 6116–6125. DOI 10.5897/AJAR2013.7455.
  • TAN D.-X., HARDELAND R., MANCHESTER L.C., KORKMAZ A., MA S., ROSALES-CORRAL S., REITER R.J. 2012. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. Journal of Experimental Botany. Vol. 63 p. 577–597. DOI 10.1093/JXB/ERR256.
  • THOMAS D.S., TURNER D.W. 2001. Banana (Musa sp.) leaf gas Exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Scientia Horticulturae. Vol. 90(1/2) p. 93–108.
  • TIWARI R.K., LAL M.K., NAGA K.C., KUMAR R. CHOURASIA K.N., SUBHASH S., KUMAR D., SHARMA S. 2020. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Scientia Horticulturae. Vol. 272, 109592. DOI 10.1016/j.scienta.2020.109592.
  • UTHAIBUTRA J., GEMMA H. 1991. Changes in abscisic acid content of peel and pulp of “Jonagold” apples during pre- and post-harvest periods. Journal of the Japanese Society for Horticultural Science. Vol. 60 p. 443–448. DOI 10.2503/JJSHS.60.443.
  • WANG Y., FAN H.-W., HUANG H.-J., XUE J., WU W.-J., BAO Y.-Y., XU H.-J., ZHU Z.-R., CHENG J.-A., ZHANG C.-X. 2012. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochemistry and Molecular Biology. Vol. 42 p. 637–646. DOI 10.1016/j.ibmb.2012.04.009.
  • WINTERMANS J.F.G.M., DE MOTS A. 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA) – Biophysics including Photosynthesis. Vol. 109 p. 448–453. DOI 10.1016/0926-6585(65)90170-6.
  • XIA H., HUANG X., WANG J., LV X., LIANG D. 2018. Physiological effects of exogenous melatonin on leaves of kiwifruit seedlings under drought stress. Proceedings of the 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM 2017). p. 1259–1262. DOI 10.2991/IFEESM-17.2018.230.
  • YE J., WANG S., DENG X., YIN L., XIONG B., WANG X. 2016. Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum. Vol. 38(2), 48. DOI 10.1007/s11738-015-2045-y.
  • YIN L., WANG P., LI M., XIWANG K., CUIYING L., LIANG D., ... M A F. 2013. Exogenous melatonin improves Malus resistance to Marssonina apple blotch. Journal of Pineal Research. Vol. 54 p. 426–434. DOI 10.1111/jpi.1203.
  • ZAHEDI S.M., HOSSEINI M.S., FAHADI HOVEIZEH N., GHOLAMI R., ABDELRAHMAN M., TRAN L.S.P. 2021. Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. Physiologia Plantarum. Vol. 173 p. 1682–1694. DOI 10.1111/PPL.13589.
  • ZAKY I.F., ABUDEL HAMID N., EL-WAKEEL H. 2018. Effect of foliar application of antioxidants on vegetative growth and leaf mineral content of chinese tangerine young trees budded on some citrus rootstocks grown under saline conditions. Arab Universities Journal of Agricultural Sciences. Vol. 26 p. 459–473. DOI 10.21608/AJS.2018.15610.
  • ZHANG H-J., ZHANG N., YANG R-C., WANG L., SUN Q-Q., LI D-B., ..., GUO Y.D. 2014. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research. Vol. 57 p. 269–279. DOI 10.1111/jpi.12167.
  • ZHAND M., JIN Z.Q., ZHAO J., ZHANG G.P., WU. 2015. F.B. Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regulation. Vol. 75 p. 567–574. DOI 10.1007/s10725-014-0022-x.
  • ZHANG N., SUN Q., ZHANG H., CAO Y., WEEDA S., REN S., GUO Y.D. 2015. Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany. Vol. 66 p. 647–656. DOI 10.1093/JXB/ERU336.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c0670ab-c5a8-4fe5-89b3-4f8d718b21ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.