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Montgomery curves are well known because of their efficiency and side channel attacks vulnerability. In this 
article it is showed how Montgomery curve arithmetic may be used for point scalar multiplication on short 
Weierstrass curve ESW over Fp with exactly one 2-torsion point and # ( )SW pE F  not divisible by 4.  
If ( )SW pP E F∈  then also 2( )SW p

P E F∈ . Because 2( )SW p
E F  has three 2-torsion points (because ( )SW pE F  has 

one 2-torsion point) it is possible to use 2-isogenous Montgomery curve 2( )M p
E F  to the curve 2( )SW p

E F  for 

counting point scalar multiplication on ( )SW pE F . However arithmetic in 2p
F  is much more complicated than 

arithmetic in pF , in hardware implementations this method may be much more useful than standard methods, 
because it may be nearly 45% faster. 
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1. Introduction 
 
There are many standards of elliptic curves, but 
not all of them allow to use fast point scalar 
mutliplication. Most of such elliptic curves over 

pF , where p is large prime, are short Weierstrass 

curves 2 3: =SWE y x ax b+ +  with = 3a −  (like 
all NIST curves over pF ) and with # SWE  prime. 
It is well known that there are special kinds of 
elliptic curves which allow to use much faster 
arithmetic, for example (twisted) Edwards 
curves, (twisted) Hessian curves and 
Montgomery curves. All of these curves always 
have order of points divisible by small integer 
bigger than 1 ((twisted) Hessian curves by 3 , 
Montgomery and (twisted) Edwards curves  
by 4 ). That is why it is impossible to use for 
example Montgomery curve arithmetic to count 
point scalar multiplication on SWE  when # SWE  
is prime. 

Fortunately, this problem can be avoided by 
using field extension. It will be showed that for 
all short Weierstrass curves over pF  with 

exactly one 2-torsion point and 4 # ( )SW pE F  it 

is possible to use 2 -isogeny from ( )2SW p
E F  to 

Montgomery curve ( )2M p
E F . It will be also 

showed that using Montgomery ladder for point 

scalar multiplication on ( )M np
E F  may be 

almost 45% faster than using Brier–Joye ladder 
for elliptic curve ( )SW pE F  for arbitrary a . 
Presented solution may be useful especially if it 
is possible to use parallel 2p

F  arithmetic. 

2p
F  arithmetic is useful for example in 

pairing or in GLS method. Such arithmetic is 
much faster than not-parallel 2p

F  arithmetic  

(see [7]). 
In this article will be presented how to 

speed-up arithmetic using XZ  coordinates  
on short Weierstrass curve over pF  using  
2-isogenous Montgomery curve over 2p

F  using 

parallel 2p
F  implementation. 

 
2. Elliptic curves 

 
Short Weierstrass curve 

 
Elliptic curve in short Weierstrass form SWE  
over field K , where ( ) 2char K ≠  is given by 
equation 

2 3: =SWE y x ax b+ +  (1) 
where 3 24 27 0a b+ ≠ . 
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Motgomery curve 
 

Montgomery curve ME  over field K , where 
( ) 2char K ≠  is given by equation 

2 3 2: =ME by x ax x+ +  (2) 
where 2( 4) 0b a − ≠ . Every Montgomery curve 

( )ME K  may be transformed into ( )SWE K .  
We should remember that it is not always 
possible to transform ( )SWE K  into ( )ME K . 

 
3. Using ladder for point scalar 

multiplication 
 

Arithmetic on short Weierstrass curve over pF  
is the fastest if = 3a − . Many of elliptic curves 
which are standards have = 3a − . In hardware 
implementations it is often required to use 
solutions vulnerable for side channel attacks. 
The simplest way to achieve this condition is 
using Brier–Joye ladder for short Weierstrass 
curves and Montgomery ladder for Montgomery 
curves. 

Very important fact is that both of these 
ladders use XZ  coordinates, so to get Y   
(if necessary) it is needed to solve quadratic 
modular equation at the end of computations. 
There is one important difference between 
Brier–Joye ladder and Montgomery ladder. 
Brier–Joye ladder for arbitrary a  requires  
20 multiplications per step and Montgomery 
ladder requires only 11 multiplications per step. 
Because multiplication is crucial operation in qF  
arithmetic, it is expected that using Montgomery 

ladder may be 11100% 100% = 45%
20

− ⋅  

faster than using Brier–Joye ladder. 
 

Brier–Joye ladder 
 

Brier–Joye ladder was firstly described in [2]. 
This method uses differential addition, so in 
every step from pair of points ([ ] ,[ 1] )m P m P+  
is computed ( )[2 ] ,[2 1]m P m P+ if bit which is 
analyzed is equal to 0 or ( )[2 1],[2 2]m m P+ + , 
if bit which is analyzed is equal to 1. 

For arbitrary a and with assumptions that 
4 = 4b b  and 1 = PX x , 1 = 1Z , where 

( )= ,P PP x y  is the generator, point scalar 
multiplication using Montgomery ladder may be 
computed as follow (presented formulas may be 
found in [4]): 

2
2=XX X  (3) 
2
2=ZZ Z  (4) 

=aZZ a ZZ⋅  (5) 
2

2 1= ( )E X Z XX ZZ+ − −  (6) 
2

4 4= ( )X XX aZZ b E ZZ− − ⋅ ⋅  (7) 

4 4
2= 2 ( )Z E XX aZZ b ZZ⋅ ⋅ + + ⋅  (8) 

2 3=A X X⋅  (9) 

2 3=B Z Z⋅  (10) 

2 3=C X Z⋅  (11) 

3 2=D X Z⋅  (12) 
2

5 4= ( ) ( )a BX A b B C D− ⋅ − ⋅ ⋅ +  (13) 
2

5 1= ( )Z X C D⋅ −  (14) 
These operations require 20 multiplications 

(8 multiplications, 7 squares, 5 multiplications 
by constant) and 12 additions/subtractions  
(11 additions/subtractions and one multiplication 
by 2). 

 
Montgomery ladder 

 
Montgomery ladder was firstly described in [5]. 
This method also uses differential addition, so in 
every step from pair of points ([ ] ,[ 1] )m P m P+  
is computed ( )[2 ] ,[2 1]m P m P+  if bit which is 

analyzed is equal to 0  or ( )[2 1],[2 2]m m P+ + , 
if bit which is analyzed is equal to 1. There are 
also assumptions that 244 = 2a a + . Then: 
 

2 2=A X Z+  (15) 
2=AA A  (16) 

2 2=B X Z−  (17) 
2=BB B  (18) 

=E AA BB−  (19) 
3 3=C X Z+  (20) 

3 3=D X Z−  (21) 
=DA D A⋅  (22) 
=CB C B⋅  (23) 

2
5 1= ( )X Z DA CB⋅ +  (24) 

2
5 1= ( )Z X DA CB⋅ −  (25) 

4 =X AA BB⋅  (26) 

4 24= ( )Z E BB a E⋅ + ⋅  (27) 
 
These operations require 11 multiplications  
( 6  multiplications, 4  squares and  
1 multiplication by constant) and  
8  additions/subtractions. 
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4. 2-isogeny from ESW(Fp
2) to 

EM(Fp
2) 

 
It is well known that if K  is finite field, then 
every Montgomery curve ( )ME K  has it order 
# ( )ME K  divisible by 4 . Let see that if short 
Weierstrass curve ( )SWE K  has 2-torsion point 

= ( , )P x y , then for such point always = 0y . So 
in the case when the ( )SWE K  has exactly one  
2-torsion point, then equation 3 = 0x ax b+ +  
has exactly one root in field K . If pK F=   

the root is also in pF . It is showed in [1], that if 

curve SWE  has three 2-torsion points, it is 
possible to find for such curve 2-isogenous 
Montgomery curve. Now let see that if curve 

( )SW pE F  has exactly one 2-torsion point  

then 2 | # ( )SW pE F . But there was also made 
assumption that 4 # ( )SW pE F , so it is 

impossible to find for ( )SW pE F  isomorphic or  

2-isogenous ( )M pE F . 
Now let see that if ( )SW pE F  has  

exactly one 2-torsion point then 
3 2

0 1 0= ( )( )x ax b x r x c x c+ + − + + , where 

0 1, pc c F∈ . It is easy to see that equation  
2

1 0x c x c+ +  (28) 
cannot have roots in pF  because ( )SW pE F  has 
only one 2-torsion point. 

Now let see that using field 2p
F which is 2-

nd degree field extension of field pF ,  
the equation (28) will have two roots 21 2,

p
r r F∈

(see [6]). Because 0 pr F∈ , then also 20 p
r F∈ ,  

so equation (28) has exactly three roots in 2p
F . 

It means that for curve 2( )SW p
E F  it is 

possible to find 2-isogenous curve 2( )M p
E F . 

Below is showed how to find such 2-isogeny 
2 2: ( ) ( )SW Mp p

E F E Fφ → . 
Firstly, there must be found all roots of 

polynomial given by equation (28). Then: 
3

0 1 2= ( )( )( )x ax b x r x r x r+ + − − −  (29) 
So 0 1 2 2, ,

p
r r r F∈ , 1 1, , , px y a b F∈  (but formally of 

course also 1 1 2, , ,
p

x y a b F∈ ) and: 

0 = 0R  (30) 

1 1 0=R r r−  (31) 

2 2 0=R r r−  (32) 
Now it is possible to construct elliptic curve 

2E  which is isomorphic to 1E : 
2 3 2

2 1 2 1 2: = ( )E y x R R x R R x− + +  (33) 
with point 

2 2 2 1 0 1= ( , ) = ( , )P x y x r y−  (34) 
Then may be found curve 3E  which is  
2-isogenous to 2E : 

2 3 2 2
3 1 2 1 2: = 2( ) ( )E y x R R x R R x+ + + −  (35) 

with point 
2 2
2 2 1 2 2

3 3 3 2 2
2 2

( )= ( , ) = ,y y R R xP x y
x x

 −
 
 

 (36) 

Now it is easy to find Montgomery curve 
which is isomorphic to 3E :  

2 3 21 2
4

1 2 1 2

2( )1
: =

R R
E y x x x

R R R R
+

+ +
− −

 (37) 

 
with point: 

3 3
4

1 2 1 2

= ,x yP
R R R R

 
 − − 

. (38) 

Finally, it is easy to see that curve 4E  is 
2-isogenous to curve 1E . 

It is possible to use similar transformations 
to find dual isogeny 2 2

1 : ( ) ( )M SWp p
E F E Fφ− →  

2 3 21 2
4

1 2 1 2

2( )1
: =

R R
E x

R R R R
y x x+

+ +
− −

 (39) 

with point 

4 4 4= ( , )P x y  (40) 
2 3 2 2

3 1 2 1 2: = 2( ) ( )E y x R R x R R x+ + + −  (41) 

with point 

3 3 3= ( , ) =P x y  

 4 1 2 4 1 2= ( ( ), ( ))x R R y R R− −  
(42) 

  
2 3 2

2 1 2 1 2: = ( )E y x R R x R R x− + +  (43) 
 

with point 

2 2 2= ( , ) =P x y  
  

(44) 

2 2
2

1 2

2 3

3 3 3

3 3

(( ) )
,

4 8

R Ry y x

x x

− − 
=   
 

  

And finally: 
2 3

1 : =E y x ax b+ +  (45) 
 
with point 

1 1 1 2 0 2= ( , ) = ( , )P x y x r y+  (46) 
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So for isogeny 1 4: E Eφ →  there is: 

1 4 4 4( ) ( , )P P x yφ = = =  (47) 
22

1 1 2 1 01

2 2

1 0 1 2 1 0 1 2

( ( ) )
,

( ) ( ) ( ) ( )

y R R x ry

x r R R x r R R

⋅ ⋅ − −

− ⋅ − − ⋅ −

 
 
 

=  

 
And of course for dual isogeny

1
4 1: E Eφ− → , there is: 

4 1 1 1( ) ( , )P P x yφ = = =  (48) 
  

2 2
2 2

1 2 1 2

02 3
2

1 2

4 4 4

4 4

( (( ) ( ) ))
,

4 8 ( )

R R R R
r

R R

y y x

y x

⋅ − − ⋅ −
+

⋅ ⋅ ⋅ −
=
 
  
 

 
It should be stated that because 2-isogeny 

has degree 2, then for every 2( )SW p
P E F∈  and 

2( )M p
P E F∈  there is always: 

1( ( )) [2]P Pφ φ− =  (49) 
and: 

1( ( )) [2]P Pφ φ− =  (50) 
 

Let’s see that using XZ  coordinates it is 
lost information about y  so this value is not 
known. 

If it is not needed to know y  it is the end of 
computations. 

If it is needed to know the value y , it may 
be found because the value of y using equation 
(2) for Montgomery curve: 

3 2
2 x ax xy

b
+ +

=  (51) 

 
Because there are two possible solutions for 

y  during computations using ladder information 
about the least significant bit of y  should be 
remembered. Then it is easy to find which value 
of y  is the proper one. 

Now let see that procedure for using 
Montgomery curve arithmetic to count point 
scalar multiplication on ( )SW pE F  with exactly 
one 2-torsion point and 4 # ( )SW pE F  should be 
as follow: 
• Extend field pF  to 2p

F . Then for generator 

1 ( )SW pP E F∈   there is also 21 ( )SW p
P E F∈ . 

• For given generator 21 ( )SW p
P E F∈  for 

which point scalar multiplication by k  is 
required (so 1 1[ ]Q k P= ) use isogeny φ  to 
obtain 24 1( ), ( )M p

P P P E Fφ= ∈ . 

• Use Montgomery ladder to obtain 

4 4[ ]  ,
2
kQ P=  where 1

12 (mod ( )).
2
k k Ord P−= ⋅  

• Use the dual isogeny 1φ−  to obtain: 
1 1

1 4 4

1 1
1 1

1 1

( ) ([ ] )
2

([ ]( )) [ ]( ( ))
2 2

[ ]([2] ) [ ] .
2

kQ Q P

k kP P

k P k P

φ φ

φ φ φ φ

− −

− −

= = =

= = =

= =

 

• It is easy to see that the result 1 ( )SW pQ E F∈  
instead of that the computations are made  
in 2p

F . 

 
5. Arithmetic in 2p

F  
 
It is showed in [7] that in FPGA 2p

F  arithmetic 

may be efficiently implemented using Karatsuba 
algorithm. Such implementation results in that 
all operations in 2p

F  are almost as fast as in pF . 

The biggest disadvantage of this solution is that 
2p

F  requires much more resources than pF  

arithmetic. For more information about 2p
F  

arithmetic see [7]. 
 
6. Complexity of proposed solution 
 
Speed of presented solution depends mostly on 
the time of multiplication in pF  which is 

denoted by MT  and on the number of additional 
processor cycles AN  required to compute 
multiplication in 2p

F  Of course, the bigger is  

the degree of used field extension, the more 
resources is needed in hardware 
implementations. 

Time required for point scalar 
multiplication in subgroup of order r  using 
Brier–Joye ladder is equal to: 

 

( ) ( )2= 1 20 12logBJL MT r T+ ⋅ +    (52) 
 
Time required for point scalar 

multiplication of order r  using Montgomery 
ladder over np

F  is equal to: 

( ) ( )( )2= 1 11 8logML M AT r T N+ ⋅ + +    (53) 
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So let: 

( , ) = 100% =ML
M A

BJL

T
W T N

T
⋅  (54) 

( )11 8
100%

20 12
M A

M

N
T

T + +
⋅

+
=   

In the table below we present values of W  
for different MT  and AN . 

 
Tab. 1. Values of ( , )

M A
W T N  for different number of 

processor cycles of MT  and different number of 
additions AN  required for multiplication in 2p

F . 

 
 

7. Results 
 
Using Montgomery curve arithmetic over 2p

F   

it is possible to compute point scalar 
multiplication on short Weierstrass curve over 

( )SW pE F  with exactly one 2-torsion point and 

4 # ( )SW pE F , up to 45% faster than using 
standard methods. 

It should be also stated that implementation 
of elliptic curve arithmetic in 2p

F  requires much 

more resources than arithmetic on elliptic curve 
over pF . 

Implementation of Montgomery arithmetic 
(with parallel addition and multiplication) in 2p

F  

should require up to four times more resources 
than classic solutions, so presented solution 
should be used only in some situations. 

This method is suitable for example if it is 
needed to have arithmetic on two elliptic curves 
with  different levels of security. Then one curve 
may use GLS (for details see [3]) method for 
which it is good to use parallel  arithmetic. 

Then the arithmetic on the second curve  
with smaller level of security (for example  
about p ), may be implemented with presented 
solution using the same 2p

F  arithmetic which is 

used for the first curve. 
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Zastosowanie arytmetyki krzywych Montgomery’ego nad ciałem 2p

F   
w celu obliczenia krotności punktu na krzywej eliptycznej  

w skróconej postaci Weierstrassa nad ciałem pF   
z dokładnie jednym punktem 2-torsyjnym  

i rzędem grupy punktów niepodzielnym przez 4 
 

M. WROŃSKI 
 
Krzywe Montgomery’ego są znane ze względu na efektywność wykonywanych na nich operacji i ich odporność 
na ataki typu „side channel”. W artykule przedstawiono, w jaki sposób można wykorzystać arytmetykę 
krzywych Montgomery’ego w celu obliczenia krotności punktu na krzywej eliptycznej w skróconej postaci 
Weierstrassa ESW nad ciałem Fp z dokładnie jednym punktem 2-torsyjnym oraz #ESW(Fp) niepodzielnym przez 
4. Jeżeli P∊ESW(Fp), wtedy również P∊ESW(Fp

2). Ponieważ ESW(Fp
2)   posiada trzy punkty 2-torsyjne (wynika to 

z tego,  
że ESW(Fp) posiada jeden punkt 2-torsyjny), możliwe jest wykorzystanie krzywej Montgomery’ego EM(Fp

2)  
2-izogenicznej do krzywej ESW(Fp

2), w celu obliczenia krotności punktu na krzywej eliptycznej na krzywej 
ESW(Fp). Jakkolwiek arytmetyka w ciałach Fp

2 jest bardziej skomplikowana niż arytmetyka w ciele Fp,  
w implementacjach sprzętowych metoda ta może być bardzo użyteczna i szybsza od metod klasycznych do 45%. 
 
Słowa kluczowe: kryptografia oparta o krzywe eliptyczne, implementacje sprzętowe, krzywe Montgomery’ego. 


