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Montgomery curves are well known because of their efficiency and side channel attacks vulnerability. In this
article it is showed how Montgomery curve arithmetic may be used for point scalar multiplication on short
Weierstrass curve Egy over F, with exactly one 2-torsion point and #Eg, (F,) not divisible by 4.

If PeEg, (F,) thenalso P e Eg, (sz) . Because Eg, (sz) has three 2-torsion points (because E, (F,) has

one 2-torsion point) it is possible to use 2-isogenous Montgomery curve E,, (sz) to the curve ESW(FPZ) for

counting point scalar multiplication on Eg, (F,) . However arithmetic in F , is much more complicated than
p

arithmetic in F_, in hardware implementations this method may be much more useful than standard methods,

because it may be nearly 45% faster.
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1. Introduction

There are many standards of elliptic curves, but
not all of them allow to use fast point scalar
mutliplication. Most of such elliptic curves over
F,, where p is large prime, are short Weierstrass

curves Eg, :y*=x’+ax+b with a=-3 (like
all NIST curves over F,) and with #E, prime.

It is well known that there are special kinds of
elliptic curves which allow to use much faster
arithmetic, for example (twisted) Edwards
curves,  (twisted) Hessian curves and
Montgomery curves. All of these curves always
have order of points divisible by small integer
bigger than 1 ((twisted) Hessian curves by 3,
Montgomery and (twisted) Edwards curves
by 4). That is why it is impossible to use for
example Montgomery curve arithmetic to count
point scalar multiplication on Eg, when #Eg,
IS prime.

Fortunately, this problem can be avoided by
using field extension. It will be showed that for
all short Weierstrass curves over F, with

exactly one 2-torsion point and 4{#Eg, (F,) it
is possible to use 2 -isogeny from Eg, (sz) to

Montgomery curve EM(sz). It will be also

showed that using Montgomery ladder for point
scalar multiplication on EM(Fpn) may be

almost 45% faster than using Brier-Joye ladder
for elliptic curve Eg, (F,) for arbitrary a.

Presented solution may be useful especially if it
is possible to use parallel sz arithmetic.
sz arithmetic is useful for example in

pairing or in GLS method. Such arithmetic is
much faster than not-parallel sz arithmetic

(see [7]).
In this article will be presented how to
speed-up arithmetic using XZ coordinates

on short Weierstrass curve over F  using
2-isogenous Montgomery curve over F , using
p

parallel sz implementation.

2. Elliptic curves
Short Weierstrass curve

Elliptic curve in short Weierstrass form Eg,
over field K, where char(K)=2 is given by
equation

Ey iy =X +ax+b (1)
where 4a° +27b* 2 0.
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Motgomery curve

Montgomery curve E,, over field K, where
char(K) = 2 is given by equation

E, :by’ =x*+ax?® +x (2)
where b(a*—-4)=0. Every Montgomery curve

E, (K) may be transformed into E, (K).
We should remember that it is not always
possible to transform E, (K) into E,, (K).

3. Using ladder for point scalar
multiplication

Arithmetic on short Weierstrass curve over Fp

is the fastest if a = —3. Many of elliptic curves
which are standards have a =-3. In hardware
implementations it is often required to use
solutions vulnerable for side channel attacks.
The simplest way to achieve this condition is
using Brier-Joye ladder for short Weierstrass
curves and Montgomery ladder for Montgomery
curves.

Very important fact is that both of these
ladders use XZ coordinates, so to get Y
(if necessary) it is needed to solve quadratic
modular equation at the end of computations.
There is one important difference between
Brier-Joye ladder and Montgomery ladder.
Brier-Joye ladder for arbitrary a requires
20 multiplications per step and Montgomery
ladder requires only 11 multiplications per step.
Because multiplication is crucial operation in F,

arithmetic, it is expected that using Montgomery
ladder may be 100%—%-100% =45%

faster than using Brier—Joye ladder.
Brier—Joye ladder

Brier-Joye ladder was firstly described in [2].
This method uses differential addition, so in
every step from pair of points ([m]P,[m +1]P)
is computed ([2m]P,[2m +1]P)if bit which is
analyzed is equal to Oor ([2m+1],[2m+2]P),

if bit which is analyzed is equal to 1.
For arbitrary a and with assumptions that

b, = 4b and X, =X, Z,=1,  where
P=(Xs,Yp) is the generator, point scalar

multiplication using Montgomery ladder may be
computed as follow (presented formulas may be
found in [4]):
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XX = X2 3)

22 =7} (4)
azZ=a-2ZZ (5)
E=(X,+2)"-XX-2Z (6)
X, = (XX —azz)*-b, -E-ZZ (7
Z,=2-E-(XX +azZ)+b, - 22* 8
A=X,-X, (9)
B=Z2,-Z, (10)
C=X,-Z, (11)
D=X,-Z, (12)
X.=(A-a-B)’-b,-B-(C+D)  (13)
Z,=X,-(C-D)? (14)

These operations require 20 multiplications
(8 multiplications, 7 squares, 5 multiplications
by constant) and 12 additions/subtractions
(11 additions/subtractions and one multiplication

by 2).
Montgomery ladder

Montgomery ladder was firstly described in [5].
This method also uses differential addition, so in
every step from pair of points ([m]P,[m +1]P)
is computed ([2m]P,[2m+1]P) if bit which is
analyzed is equal to 0 or ([2m+1],[2m+2]P),
if bit which is analyzed is equal to 1. There are
also assumptions that 4a,, =a+2. Then:

A=X,+Z, (15)

= A2 (16)
B=X,-2Z, 17)

BB =B’ (18)
E=AA-BB (19)
C=X,+Z, (20)
D=X,-Z, (21)
DA=D-A (22)
CB=C-B (23)

X, =Z, -(DA+CB)? (24)
Z, = X, -(DA-CB)? (25)
X, =AA-BB (26)
Z,=E-(BB+a,-E) (27)

These operations require 11 multiplications
(6 multiplications,

1

multiplication by

8 additions/subtractions.

and
and
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4. 2-isogeny from Egy(F,”) to

Em(Fp?)

It is well known that if K is finite field, then
every Montgomery curve E,, (K) has it order
#E,, (K) divisible by 4. Let see that if short

Weierstrass curve Eg, (K) has 2-torsion point
P =(x,y), then for such point always y=0. So

in the case when the E, (K) has exactly one

2-torsion point, then equation x*+ax+b=0
has exactly one root in field K. If K=F,

the root is also in F_. It is showed in [1], that if

curve Eg, has three 2-torsion points, it is

possible to find for such curve 2-isogenous
Montgomery curve. Now let see that if curve
Eqw (F,) has exactly one 2-torsion point

then 2|#E, (F,). But there was also made
41 #Eg, (F)), so it s
impossible to find for Eg, (F,) isomorphic or

assumption that

2-isogenous Ey, (F,).

Now let see that if Eg,(F,) has
exactly one 2-torsion point then
X} +ax+b=(X-r)(X*+cX+c,), where
G, G € F, . Itis easy to see that equation

X2 +C,X+C, (28)
cannot have roots in F, because Eg, (F,) has
only one 2-torsion point.

Now let see that using field sz which is 2-
nd degree field of field F,,
the equation (28) will have two roots r,,r, e F.

extension

(see [6]). Because r,eF,, then also r, eF.,
so equation (28) has exactly three roots in F.

It means that for curve Eg, (F.) it is
possible to find 2-isogenous curve Ew(F..)-
Below is showed how to find such 2-isogeny
¢ B (F.) > Ey(F).

Firstly, there must be found all roots of
polynomial given by equation (28). Then:

x> +ax+b=(xX—r)(x-r)(x-r,) (29)
So 1,1, € sz , X, Y,a,be Fp (but formally of
course also x,y,,a,be sz ) and:

R,=0 (30)
R=nr-n (31)

R,=r,—-1, (32)
Now it is possible to construct elliptic curve
E, which is isomorphic to E;:
E,:y*=x’-(R +R)X* + RR,X (33)
with point
P =(%,Y,) = (% —1,Y,) (34)
Then may be found curve E; which is
2-isogenous to E,:
E,:y?=x"+2(R +R)X*+(R -R,)’x  (35)
with point

P, =(%.Y,) = [%,—yzmsi_ & )j (36)

Now it is easy to find Montgomery curve
which is isomorphic to E,:
1

E4:—y2=x3+—2(R1+R2)x2+x (37)
R1_R2 Rl_RZ
with point:
X Y.
P, = 3 —3J (38)
) (RI_RZ R1_R2

Finally, it is easy to see that curve E, is
2-isogenous to curve E;.

It is possible to use similar transformations
to find dual isogeny ¢ :E,, (F.) > Eg (F))

E,: ! 2—X3+—2(R1+R2)x2+x 39
v Rl_ Rz g Rl_RZ ( )

with point
|:>4 = (X4,y4) (40)

E,:y =X +2(R +R)X*+(R —R,)’x  (41)
with point
P = (%, ¥:) =

= _ (42)
= (%R —R,), ¥, (R - R,))
E,:y* =x’—(R +R)X* + RR,X (43)
with point
Pz :(X27y2): (44)
[ Y W(R-RY-%)
ax, 8X,
And finally:
E,:y?=x"+ax+b (45)
with point
P=(x Y1) = (% +1,Y,) (46)
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So for isogeny ¢:E, — E, there is:
¢(Pl)= P4 =(x4,y4)= (47)
— A yl.(Rl.RZ_(Xl_rO)z)
(X1 - ro)2 : (R1 - Rz) ’ (X1 - ro)2 : (R1 - Rz)

And of course for dual isogeny
¢ :E, > E,, there is:
#(P) =R =(x.y,) = (48)

(e L (R-R) =X, -(R-R)))
- —2 +r;1’ —3
4.y, 8-X, ‘(R-R)

It should be stated that because 2-isogeny
has degree 2, then for every P e ESW(sz) and

PeE, (F,) there is always:

¢ (#(P) =[2IP (49)

and:

#(¢ ' (P)) =[2]P (50)

Let’s see that using XZ coordinates it is
lost information about y so this value is not

known.
If it is not needed to know vy it is the end of

computations.
If it is needed to know the value y, it may

be found because the value of y using equation
(2) for Montgomery curve:
;X +ax’+X
b

Because there are two possible solutions for
y during computations using ladder information
about the least significant bit of y should be
remembered. Then it is easy to find which value
of y is the proper one.

Now let see that procedure for using
Montgomery curve arithmetic to count point
scalar multiplication on Eg, (F,) with exactly

(51)

one 2-torsion point and 41 #Eg, (F,) should be

as follow:
e Extend field F, to sz . Then for generator

P € Eg, (F,) thereisalso P, eEg, (F.).
e For given generator P ek, (F.) for

which point scalar multiplication by Kk is
required (so Q, =[k]P,) use isogeny ¢ to
obtain P, =¢(P),P € E,, (sz) .
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e Use Montgomery ladder to obtain
Q, =[§]P4 , Where gzk-z‘l(mod Ord(R)).

e Use the dual isogeny ¢ to obtain:

Q=4"Q)=¢"(CIR) -
- ¢'1([§](¢P1» - [g](¢‘l (#P)) =

=[§]([2]P1) ~[KIP,

It is easy to see that the result Q, e Eg, (F,)

instead of that the computations are made
in sz.

5. Arithmetic in F .

It is showed in [7] that in FPGA sz arithmetic

may be efficiently implemented using Karatsuba
algorithm. Such implementation results in that
all operations in Fpz are almost as fastas in F,.

The biggest disadvantage of this solution is that
Fp2 requires much more resources than F

arithmetic. For more information about sz

arithmetic see [7].

6. Complexity of proposed solution
Speed of presented solution depends mostly on
the time of multiplication in F, which is

denoted by T,, and on the number of additional
processor cycles N, required to compute
multiplication in sz Of course, the bigger is

the degree of used field extension, the more

resources is needed in hardware
implementations.
Time  required for  point  scalar

multiplication in subgroup of order r using
Brier-Joye ladder is equal to:

T = (| log,r |+1)-(20T, +12) (52)

Time  required for  point  scalar
multiplication of order r using Montgomery
ladder over Fpn is equal to:

T = (| log,r [+1)- (14T, +N,)+8) (53)
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So let:

T
W(I'M,NA)zT&-lOO%: (54)

BJL
1T, +N,)+8
20T, +12

In the table below we present values of W
for different T,, and N,,.

-100%

Tab. 1. Values of W(T ,N ) for different number of
processor cycles of T,, and different number of
additions N, required for multiplication in sz.

61.95%
58,51%|

56,77% 5848%

6192%

SR e | ) P P

a4

55,88% 56,74%

7. Results

Using Montgomery curve arithmetic over sz

it is possible to compute point scalar
multiplication on short Weierstrass curve over
Eqy (F,) with exactly one 2-torsion point and

41 #Eg, (F,), up to 45% faster than using
standard methods.

It should be also stated that implementation
of elliptic curve arithmetic in sz requires much

more resources than arithmetic on elliptic curve
over F,.

Implementation of Montgomery arithmetic
(with parallel addition and multiplication) in sz

should require up to four times more resources
than classic solutions, so presented solution
should be used only in some situations.

This method is suitable for example if it is
needed to have arithmetic on two elliptic curves
with different levels of security. Then one curve
may use GLS (for details see [3]) method for

which it is good to use parallel sz arithmetic.

Then the arithmetic on the second curve
with smaller level of security (for example

about +/p ), may be implemented with presented
solution using the same sz arithmetic which is

used for the first curve.

8.
(1]
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Zastosowanie arytmetyki krzywych Montgomery’ego nad cialem sz

w celu obliczenia krotnos$ci punktu na krzywej eliptycznej
w skroconej postaci Weierstrassa nad cialem F|

z dokladnie jednym punktem 2-torsyjnym
i rzedem grupy punktow niepodzielnym przez 4

M. WRONSKI

Krzywe Montgomery’ego sa znane ze wzgledu na efektywnos¢ wykonywanych na nich operacji i ich odpornos¢
na ataki typu ,side channel”. W artykule przedstawiono, w jaki sposéb mozna wykorzysta¢ arytmetyke
krzywych Montgomery’ego w celu obliczenia krotnosci punktu na krzywej eliptycznej w skréconej postaci
Weierstrassa Egw nad ciatem F, z doktadnie _]ednym punktem 2- torsyjnym oraz #Esw(F,) niepodzielnym przez
4. Jezeli PeEgw(Fp), wtedy rowniez PeEgy (Fp %). Poniewaz Esw(Fp %) posiada trzy punkty 2-torsyjne (wynika to
z tego
ze ESW(Fp) posiada jeden punkt 2- torsyjny) mozliwe jest wykorzystanie krzywej Montgomery’ego En(F, %)
2-izogenicznej do krzywej Esw(Fp %), w celu obhczenla krotnosci punktu na krzywej eliptycznej na krzywe]
Esw(Fp). Jakkolwiek arytmetyka w ciatach F jest bardziej skomplikowana niz arytmetyka w ciele Fy,
w implementacjach sprz¢towych metoda ta moze byc bardzo uzyteczna i szybsza od metod klasycznych do 45%.

Stowa kluczowe: kryptografia oparta o krzywe eliptyczne, implementacje sprzetowe, krzywe Montgomery’ego.
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