PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PM10 source apportionment at two urban sites in Southern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Identyfikacja źródeł PM10 w dwóch lokalizacjach miejskich w południowej Polsce
Języki publikacji
EN
Abstrakty
EN
The main aim of the study was to achieve a better understanding of the chemical composition, seasonal variation, and sources of ambient particulate matter in two mid-sized towns in Southern Poland, characterized by a significant air pollution issues: Nowy Targ and Zabierzów. Daily PM10 samples were chemically analyzed for the content of water-soluble ions, carbonaceous matter and trace elements. Positive Matrix Factorization (PMF) was applied for source apportionment. The annual mean PM10 concentrations were 38 μg/m3 and 41 μg/m3 in Zabierzów and Nowy Targ, respectively. Secondary species (SIA + SOC) constituted, on average, 23% of PM10 in Nowy Targ, while in Zabierzów, this share varied from 32% to 41% during the non-heating and heating seasons, respectively. The proportion of primary pollutants (EC + POC) in PM10 substantially increased during the heating season in both locations, reaching 24% and 37% of PM10 in Zabierzów and Nowy Targ, respectively. PMF analyses identifies four sources with similar profiles at both sites: residential coal combustion, residential wood combustion, road transport, and secondary aerosol. In both locations, residential coal and wood combustion were the largest contributing sources (on average 44% and 50% of PM10 in Zabierzów and Nowy Targ, respectively), followed by road transport (on average 14% and 21% of PM10). Local sources were the dominant contributors to PM10 at both sites, accounting for 86% and 90% of PM10 in Nowy Targ and Zabierzów, respectively. These findings underscore the importance of implementing control strategies tailored to local factors to improve air quality in these towns.
PL
Głównym celem badań było lepsze zrozumienie składu chemicznego, zmienności sezonowej i źródeł pyłu zawieszonego w powietrzu w dwóch środowiskach miejskich charakteryzujących się znacznym problemem zanieczyszczenia powietrza, położonych na południu Polski, tj. w Nowym Targu i Zabierzowie. Dobowe próbki pyłu PM10 scharakteryzowano chemicznie pod kątem zawartości jonów rozpuszczalnych w wodzie, materii węglowej i pierwiastków śladowych. Do identyfikacji źródeł PM10 zastosowano dodatnią faktoryzację macierzy (Positive Matrix Factorization – PMF). Średnie roczne stężenie PM10 wynosiło 38 μg/m3 i 41 μg/m3, odpowiednio w Zabierzowie i Nowym Targu. Zanieczyszczenia wtórne (SIA + SOC) stanowiły średnio 23% PM10 w Nowym Targu, natomiast w Zabierzowie wahały się od 32% do 41% PM10, odpowiednio w sezonie niegrzewczym i grzewczym. Udział zanieczyszczeń pierwotnych (EC + POC) w PM10 znacznie wzrastał w obu lokalizacjach w sezonie grzewczym, stanowiąc od 24% do 37% PM10, odpowiednio w Zabierzowie i Nowym Targu. Analiza PMF pozwoliła na zidentyfikowanie w obu lokalizacjach czterech źródeł o podobnych profilach, obejmujących spalanie węgla w sektorze komunalno-bytowym, spalanie drewna w sektorze komunalno-bytowym, transport drogowy i aerozol wtórny. W obu lokalizacjach największym źródłem emisji PM10 było spalanie węgla i drewna w sektorze komunalno- bytowym (łącznie 44% i 50% PM10, odpowiednio w Zabierzowie i Nowym Targu), a następnie transport drogowy (średnio 14% i 21% PM10). W obu lokalizacjach największy udział w stężeniach PM10 miały źródła lokalne (średnio 86% i 90% PM10, odpowiednio w Nowym Targu i Zabierzowie), co podkreśla znaczenie strategii działań naprawczych dostosowanych do lokalnych czynników kształtujących jakość powietrza w miastach.
Rocznik
Strony
116--134
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Poland
  • Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Poland
  • The Institute of Environmental Engineering of the Polish Academy of Sciences, Poland
  • The Institute of Environmental Engineering of the Polish Academy of Sciences, Poland
  • Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering, Poland
Bibliografia
  • 1. Banerjee, T., Murari, V., Kumar, M. & Raju, M.P. (2015). Source apportionment of airborne particulates through receptor modeling: Indian scenario, Atmospheric Research, 164-165, pp. 167-187. DOI:10.1016/j.atmosres.2015.04.017
  • 2. Błaszczak, B., Mathews, B., Słaby, K. & Klejnowski, B. (2023). Distribution of EC and OC temperature fractions in different research materials, Archives of Environmental Protection, 49, 2, pp. 95-103. DOI:10.24425/aep.2023.145901
  • 3. Błaszczak, B., Zioła, N., Mathews, B., Klejnowski, K. & Słaby, K. (2020). The role of PM2.5 chemical composition and meteorology during high pollution periods at a suburban background station in Southern Poland, Aerosol and Air Quality Research, 20, 11, pp. 2433-2447. DOI:10.4209/aaqr.2020.01.0013
  • 4. Cavalli, F., Viana, M., Yttri, K.E., Genberg, J. & Putaud, J.-P. (2010). Toward a standarised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmospheric Measurement Techniques, 3, 1, pp. 79-89. DOI:10.5194/amt-3-79-2010
  • 5. Castro, L.M., Pio, C.A., Harrison, R.M. & Smith, D.J.T. (1999). Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations, Atmospheric Environment, 33, 17, pp. 2771-2781. DOI:10.1016/S1352-2310(98)00331-8
  • 6. Cesari, D., De Benedetto, G.E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., Chirizzi, D., Cristofanelli, P., Donateo, A., Grasso, F.M., Marinoni, A., Pennetta, A. & Contini, D. (2018). Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy, Science of The Total Environment, 612, pp. 202-213. DOI:10.1016/j.scitotenv.2017.08.230
  • 7. Cheng, M.T., Lin, Y.C., Chio, C.P., Wang, C.F. & Kuo, C.Y. (2005). Characteristics of aerosols collected in central Taiwan during an Asian dust event in spring 2000, Chemosphere, 61(10), pp. 1439-1450. DOI:10.1016/j.chemosphere.2005.04.120
  • 8. EEA (2023a). European Environment Agency, 2023. Air quality in Europe 2023, (https://www.eea.europa.eu/publications/europes-air-quality-status-2023 (20.04.2024)).
  • 9. EEA (2023b). European Environment Agency, 2023. Air pollutant emissions data viewer (Gothenburg Protocol, Air Convention) 1990-2021, (https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer-5 (20.05.2024)).
  • 10. Fabbri, D., Torri, C., Simoneit, B.R.T., Marynowski, L., Rushdi, A.I. & Fabiańska, M.J. (2009). Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites, Atmospheric Environment, 43, 14, pp. 2286-2295. DOI:10.1016/j.atmosenv.2009.01.030
  • 11. Fachinger, F., Drewnick, F. & Borrman, S. (2021). How villages contribute to their local air quality - The influence of traffic- and biomass combustion-related emissions assessed by mobile mappings of PM and its components, Atmospheric Environment, 263, 118648, pp. 1-12. DOI:10.1016/j.atmosenv.2021.118648
  • 12. Geochemistry, Geophysics, Geosystems, 2, 2000GC000109. DOI:10.1029/2000GC000109
  • 13. Godłowska, J., Kaszowski, K. & Kaszowki, W. (2022). Application of the FAPPS system based on the CALPUFF model in short-term air pollution forecasting in Krakow and Lesser Poland, Archives of Environmental Protection, 48, 3, pp. 109-117, DOI:10.24425/aep.2022.142695
  • 14. Hopke, P.K., Dai, Q., Li, L. & Feng, Y. (2020). Global review of recent source apportionments for airborne particulate matter, Science of The Total Environment, 740, 140091, pp. 1-10. DOI:10.1016/j.scitotenv.2020.140091
  • 15. Juda-Rezler, K., Reizer, M., Maciejewska, K., Błaszczak, B. & Klejnowski K. (2020). Characterization of atmospheric PM2.5 sources at a Central European urban background site, Science of The Total Environment, 713, 136729, pp. 1-15. DOI:10.1016/j.scitotenv.2020.136729
  • 16. Klyta, J., Janoszka, K., Czaplicka, M., Rachwał, T. & Jawor, K. (2023). Co-combustion of wood pellet and waste in residential heating boilers - comparison of carbonaceous compound emission, Archives of Environmental Protection, 49, 3, pp. 100-106. DOI:10.24425/aep.2023.147332
  • 17. Manousakas, M., Diapouli, E., Belis, C.A., Vasilatou, V., Gini, M., Lucarelli, F., Querol, X. & Eleftheriadis, K. (2021). Quantitative assessment of the variability in chemical profiles from source apportionment analysis of PM10 and PM2.5 at different sites within a large metropolitan area, Environmental Research, 192, 110257, pp. 1-13. DOI:10.1016/j.envres.2020.110257
  • 18. Mazurek, I., Skawińska, A. & Sajdak, M. (2021). Analysis of chlorine forms in hard coal and the impact of leaching conditions on chlorine removal, Journal of the Energy Institute, 94, pp. 337-351. DOI:10.1016/j.joei.2020.10.002
  • 19. McLennan, S.M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochemistry, Geophysics, Geosystems, 2, 2000GC000109. DOI:10.1029/2000GC000109
  • 20. Nava, S., Lucarelli, F., Amato, F., Becagli, S., Calzolai, G., Chiari, M., Giannoni, M., Traversi, R. & Udisti, R. (2015). Biomass burning contributions estimated by synergistic coupling of daily and hourly aerosol composition records, Science of The Total Environment, 511, pp. 11-20. DOI:10.1016/j.scitotenv.2014.11.034
  • 21. Paatero, P. & Hopke, P.K. (2003). Discarding or downweighting high-noise variables in factor analytic models, Analytica Chimica Acta, 490, 1-2, pp. 277-289. DOI:10.1016/S0003-2670(02)01643-4
  • 22. Paatero, P. & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 2, pp. 111-126. DOI:10.1002/env.3170050203
  • 23. Polissar, A.V., Hopke, P.K., Paatero, P., Malm, W.C. & Sisler, J.F. (1998). Atmospheric aerosol over Alaska - 2. Elemental composition and sources, Journal of Geophysical Research, 103, D15, pp. 19045-19057. DOI:10.1029/98JD01212
  • 24. Querol, X., Alastuey, A., Rodríguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G. & Puig O. (2001). PM10 and PM2.5 source apportionment in the Barcelona Metropolitan Area, Catalonia, Spain, Atmospheric Environment, 35-36, pp. 6407-6419. DOI:10.1016/S1352-2310(01)00361-2
  • 25. Reizer, M., Calzolai, G., Maciejewska, K., Orza, J.A.G., Carraresi, L., Lucarelli, F. & Juda-Rezler K. (2021). Measurement report: Receptor modeling for source identification of urban fine and coarse particulate matter using hourly elemental composition, Atmospheric Chemistry and Physics, 21, 19, pp. 14471-14492. DOI:10.5194/acp-21-14471-2021
  • 26. Reizer, M. & Juda-Rezler, K. (2016). Explaining the high PM10 concentrations observed in Polish urban areas, Air Quality, Atmosphere & Health, 9, pp. 517-531. DOI:10.1007/s11869-015-0358-z
  • 27. Squizzato, S., Cazzaro, M., Innocente, E., Visin, F., Hopke, P.K. & Rampazzo, G. (2017). Urban air quality in a mid-size city - PM2.5 composition, sources and identification of impact areas: From local to long range contributions, Atmospheric Research, 186, pp. 51-62. DOI:10.1016/j.atmosres.2016.11.011
  • 28. Tammekivi, T., Kaasik, M., Hamer, P., Santos, G.S. & Šteinberga, I. (2023). Air pollution in small towns, including winter resorts: a comparative study of three cases in Northern Europe, Air Quality, Atmosphere & Health, 16, pp. 945-961. DOI:10.1007/s11869-023-01315-2
  • 29. Trippetta, S., Sabia, S. & Caggiano, R. (2016). Fine aerosol particles (PM1): natural and anthropogenic contributions and health risk assessment. Air Quality, Atmosphere and Health, 9, pp. 621-629. DOI:10.1007/s11869-015-0373-0
  • 30. WHO (2021). WHO global air quality guidelines: particulate matter (‎PM2.5 and PM10)‎, ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization, Geneva 2021.
  • 31. Wielgosiński, G. & Czerwińska, J. (2020). Smog Episodes in Poland, Atmosphere, 11, 3, 277, pp. 1-13. DOI:10.3390/atmos11030277
  • 32. Wiśniewska, K., Lewandowska, A.U. & Staniszewska, M. (2019). Air quality at two stations (Gdynia and Rumia) located in the region of Gulf of Gdansk during periods of intensive smog in Poland, Air Quality, Atmosphere & Health, 12, pp. 879-890. DOI:10.1007/s11869-019-00708-6
  • 33. Yin, H., Brauer, M., Zhang, J., Cai, W., Navrud, S., Burnett, R., Howard, C., Deng, Z., Kammen, D.M., Schellnhuber, H.J., Chen, K., Kan, H., Chen, Z.-M., Chen, B., Zhang, N., Mi, Z., Coffman, D., Cohen, A.J., Guan, D., Zhang, Q., Gong, P. & Liu, Z. (2021). Population ageing and deaths attributable to ambient PM2.5 pollution: a global analysis of economic cost, The Lancet Planetary Health, 5, pp. e356-e367. DOI:10.1016/S2542-5196(21)00131-5
  • 34. Zabalza, J., Ogulei, D., Hopke, P.K., Lee, J.H., Hwang, I., Querol, X., Alastuey, A. & Santamaria, J.M. (2006). Concentration and sources of PM10 and its constituents in Alsasua, Spain, Water, Air & Soil Pollution, 174, pp. 385-404. DOI:10.1007/s11270-006-9136-8
  • 35. Zhao, C. & Luo K. (2018). Household consumption of coal and related sulfur, arsenic, fluorine and mercury emissions in China, Energy Policy, 112, pp. 221-232. DOI:10.1016/j.enpol.2017.10.021
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3c04df3c-2ab9-4c17-b4c6-f52a0a0a1910
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.