PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer simulation of mucosal waves on vibrating human vocal folds

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A three-dimensional (3D) finite element (FE) fully parametric model of the human larynx based on computer tomografy measurements was developed and specially adapted for numerical simulation of vocal folds vibrations with collisions. The complex model consists of the vocal folds, arytenoids, thyroid and cricoid cartilages. The vocal fold tissue is modeled as a three layered transversal isotropic material composed of the cover, ligament and muscle and compared with a four layered material where part of the cover was substituted by a liquid layer modelling the superficial layer of lamina propria. First, the basic frequency-modal properties of the model are presented for a given pretension of the vocal folds. The results of numerical simulation of the vocal folds oscillations excited by a prescribed intraglottal aerodynamic pressure are then presented. The results computed in time domain show the 3D motion of the vocal folds in all three directions (horizontal, vertical and anterior-posterior) and the mucosal waves are clearly modeled in the medial cross-section of the vocal folds. The proper orthogonal decomposition (POD) analysis of the excited modes of vibration shows that when taking account of the superficial sub-layer inside the lamina propria with liquid like properties the POD modes are in better agreement with the empirical eigenfunctions (EEF) obtained from measurements performed on excised human larynges. Finally, the usability of the POD analysis for simulation of pathological situations is demonstrated considering a vocal fold nodule located on the upper cranial margin of the right vocal fold.
Twórcy
autor
  • Dept. of Mechanics, Biomechanics and Mechatronics, Czech Technical University in Prague, Technická 4, 166 07 Praha 6, Czech Republic
autor
  • Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
  • Institute of Anatomy, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
Bibliografia
  • [1] Fant G. Acoustic theory of speech production. 2nd ed. Mouton: S'Gravenage; 1960.
  • [2] Titze IR. Principles of voice production. Prentice Hall; 1994, Second printing (2000).
  • [3] Mittal R, Zheng X, Bhardwaj R, Seo JH, Xue Q, Bielamowicz S. Toward a simulation-based tool for the treatment of vocal fold paralysis. Front Comput Physiol Med 2011;2:1–1519.
  • [4] Chen T, Chodara AM, Sprecher AJ, Fang F, Song W, Tao Ch, et al. A new method of reconstruction the human larygeal architecture using micro-MRI. J Voice 2012;26(5):555–62.
  • [5] Zheng X, Mittal R, Xue Q, Bielamowicz S. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model. J Acoust Soc Am 2011;130(1):404–15.
  • [6] Švec JG, Schutte HK. Kymographic imaging of laryngeal vibrations. Curr Opin Otolaryngol Head Neck Surg 2012;20:458–65.
  • [7] Sonninen A, Laukkanen AM. Hypothesis of whiplike motion as a possible traumatizing mechanism in vocal fold vibration. Folia Phoniatr Logop 2003;55:189–98.
  • [8] Alipour F, Berry D, Titze IR. A finite-element model of vocal- fold vibration. J Acoust Soc Am 2000;108:3003–12.
  • [9] Berry DA, Montequin DW, Tayama N. High-speed digital imaging of the medial surface of the vocal folds. J Acoust Soc Am 2001;110:2539–47.
  • [10] Döllinger M, Berry DA, Berke GS. Medial surface dynamics of an in vivo canine vocal fold during phonation. J Acoust Soc Am 2005;117:3174–83.
  • [11] Döllinger M, Berry DA. Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation. J Voice 2006;20(3):401–13.
  • [12] Boessenecker A, Berry DA, Lohscheller J, Eysholdt U, Doellinger M. Mucosal wave properties of a human vocal fold. Acta Acustica 2007;93:815–23.
  • [13] Bakhshaee H, Young J, Yang JCW, Mongeau L, Miri AK. Determination of strain field on the superior surface of excised larynx vocal folds using DIC. J Voice 2013;27 (6):659–67.
  • [14] Zhang Z, Neubauer J, Berry DA. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds. J Acoust Soc Am 2006;120:2841–9.
  • [15] Murray PR, Thomson SL. Vibratory responses of synthetic, self-oscillating vocal fold models. J Acoust Soc Am 2012;132 (5):3428–38.
  • [16] Reinke FB. Untersuchungen über das menschliche Stimmband. Fortschr Med München 1895;13:469–78.
  • [17] Hirano M. Morphological structure of the vocal fold as a vibrator and its variations. Folia Phoniatr 1974;26(2): 89–94.
  • [18] Hirano M. Phonosurgery, basic and clinical investigations. Otologia Fukuoka 1975;21(Suppl. 1):239–62.
  • [19] Hirano M, Sato K. Histological color atlas of the human larynx. San Diego: Singular Publ. Group; 1993.
  • [20] Standring S, Gray H. Gray's anatomy: the anatomical bases of clinical practice. 39th ed. Edinburgh: Elsevier Churchill Livingstone; 2005.
  • [21] Schuenke M, Schulte E, Schumacher U, Thieme RJ. Atlas of anatomy (neck and internal organs). Stuttgart, New York: Thieme; 2006.
  • [22] Titze IR. The myoelastic aerodynamic theory of phonation. Iowa City, USA: National Centre for Voice and Speech; 2006.
  • [23] Gray S, Hirano M, Sato K. Molecular and cellular structure of vocal fold tissue. In: Titze IR, editor. Vocal fold physiology: frontiers in basic science. San Diego: Singular Publishing Group; 1993. p. 1–35.
  • [24] Melo EChM, Lemos M, Filho JAX, Sennes LU, Saldiva PHN, Tsuji DH. Collagen distribution in human vocal fold. Laryngoscope 2003;113:2187–91.
  • [25] Gray SD. Cellular physiology of the vocal folds. Voice disorders and phonosurgery I. Otolaryngol Clin North Am 2000;33(4):679–97.
  • [26] Kerckaert I, Van Hoof T, Pattyn P, D'Herde K. Endogent: Centre for Anatomy and Invasive Techniques. Anatomy 2008;2:28–33. http://dx.doi.org/10.2399/ana.08.028.
  • [27] Suganthy J, Deepak VF. Plastination using standard S10 technique – our experience in Christian Medical College, Vellore. J Anat Soc India 2012;61(2):44–7.
  • [28] Guzman M, Laukkanen AM, Krupa P, Horáček J, Švec JG, Geneid A. Vocal tract and glottal function during and after vocal exercising with resonance tube and straw. J Voice 2013;27:523.e19–3. http://dx.doi.org/10.1016/j.jvoice.2013.02.007.
  • [29] Hampala V, Laukkanen AM, Guzman MA, Horáček J, Švec JG. Vocal fold adjustment caused by phonation into a tube: a double case study using computed tomography. J Voice 2015;10. http://dx.doi.org/10.1016/j.jvoice.2014.10.022.
  • [30] Vampola T, Horáček J, Laukkanen AM, Švec JG. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement. Logop Phoniatr Vocol 2015;40:14–23. http://dx.doi.org/10.3109/14015439.2013.775333.
  • [31] Simo JC, Laursen TA. An augmented Lagrangian treatment of contact problems involving friction. Comput Struct 1992;42(1):97–116.
  • [32] Cescotto S, Zhu YY. Large strain dynamic analysis using solid and contact finite elements based on a mixed formulation – application to metalforming. J Metals Process Technol 1994;45:657–63.
  • [33] Avallone EA, Baumeister III T, Sadegh AM, editors. Marks' standard handbook for mechanical engineers. 11th ed. New York: McGraw-Hill; 2007.
  • [34] Horáček J, Šidlof P, Švec JG. Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces. J Fluids Struct 2005;20:853–69.
  • [35] Feeny BF, Kappagantu R. Proper orthogonal modes in vibrations. J Sound Vib 1998;211(4):607–16.
  • [36] Berry DA, Herzel H, Titze R, Krischer K. Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions. J Acoust Soc Am 1994;95(6):3595–604.
  • [37] Döllinger M, Berry DA, Luegmair G, Hüttner B, Bohr Ch. Effects of the epilarynx area on vocal fold dynamics and the primary voice signal. J Voice 2012;26(3):285–92.
  • [38] Horáček J, Laukkanen AM, Šidlof P, Murphy P, Švec JG. Comparison of acceleration and impact stress as possible loading factors in phonation. A computer modeling study. Folia Phoniatr Logop 2009;61(3):137–45.
  • [39] Luo H, Mittal R, Zheng X, Bielamowicz SA, Walsh RJ, Hahn JK. An immersed boundary method for flow-structure interaction in biological systems with application to phonation. J Comput Phys 2008;227(22):9303–32.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bfa64b6-3d80-4a9b-b8d0-2c8414dfb3f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.