PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural and Micromechanical Tests of Titanium Crowns

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania mikrostrukturalne i mikromechaniczne koron tytanowych
Języki publikacji
EN
Abstrakty
EN
Fixed prosthetic restorations must meet the health requirements in terms of the protection of the tissues of the oral cavity, biomechanical requirements for optimal tissue stress and the strength and wear resistance of the structure, aesthetic requirements related to the location of the gingival margin, as well as the shape, thickness, and colour of the veneers. The aim is to evaluate the impact of manufacturing technology on the microstructure and micromechanical parameters of titanium crowns. The material of the analysis are prosthetic crowns made of Ti6Al4V alloy for the maxilla premolars and the mandible molars, produced using two technologies: Selective Laser Melting (SLM) and CAD/CAM milling. Crown structures were evaluated on the basis of examinations of the microstructure and surface layer of the chamfers, micromechanical parameters in axial sections perpendicular to the dental arches, and the accuracy of mapping the internal shape in sections with horizontal planes perpendicular to the axis of the abutment tooth. The results of this work can be used in a clinical setting. They allow the evaluation of what is the impact of the technology of producing the supporting substructure on the structure of the prosthetic crown. The strength requirements in both technologies are met, while the higher value of the microhardness of the titanium SLM substructure, compared to the milled one, increases the stiffness of the structure under conditions of biomechanical excitation. The errors in mapping the internal shape of the crowns are comparable and slightly higher during sintering.
PL
Stałe uzupełnienia protetyczne powinny spełniać wymagania zdrowotne w aspekcie zabezpieczenia tkanek jamy ustnej, wymagania biomechaniczne dotyczące optymalnego wytężenia tkanek oraz wytrzymałości i odporności na zużycie konstrukcji, wymagania estetyczne związane z usytuowaniem obrzeża dodziąsłowego, a także kształtem, grubością i kolorem licowania. Celem jest ocena wpływu technologii wytwarzania na mikrostrukturę i parametry mikromechaniczne koron tytanowych. Materiałem analizy są korony protetyczne ze stopu Ti6Al4V na zęby przedtrzonowe szczęki i trzonowe żuchwy wytwarzane dwoma technologiami: Selective Laser Melting (SLM) i frezowania CAD/CAM. Konstrukcje koron oceniano na podstawie badań mikrostruktury i warstwy wierzchniej stopni, parametrów mikromechanicznych w osiowych przekrojach prostopadłych do łuków zębowych oraz dokładności odwzorowania kształtu wewnętrznego w przekrojach płaszczyznami horyzontalnymi, prostopadłymi do osi zęba filarowego. Wyniki tej pracy mogą być wykorzystane w warunkach klinicznych. Pozwalają ocenić, jaki jest wpływ technologii wytworzenia podbudowy nośnej, na konstrukcję korony protetycznej. Wymagania wytrzymałościowe w obu technologiach są spełnione, przy czym wyższa wartość mikrotwardości podbudowy tytanowej z SLM, w porównaniu do frezowanej, wpływa na zwiększenie sztywności konstrukcji w warunkach wymuszeń biomechanicznych. Błędy odwzorowania kształtu wewnętrznego koron są porównywalne i nieco wyższe przy spiekaniu.
Czasopismo
Rocznik
Tom
Strony
61--72
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics and Orthodontics, 4 Montelupich Street, 31-155 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, 30 Mickiewicza Ave., 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, 30 Mickiewicza Ave., 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, 30 Mickiewicza Ave., 30-059 Krakow, Poland
  • State University of Applied Science, Institute of Technology, 1a Zamenhofa Street, 33-300 Nowy Sacz, Poland
Bibliografia
  • 1. Dolev, E., Bitterman, Y., Meirowitz, A. Comparison of marginal fit between CAD-CAM and hot-presslithium disilicate crowns. J Prosthet Dent, 121(1), 2019, 124-128.
  • 2. Hong, M.H., Min, B.K., Lee, D.H., Kwon, T.Y. Marginal fit of metal-ceramic crowns fabricated by using a casting and two selective laser melting processes before and after ceramic firing. J Prosthet Dent, 122, 2019, 475-481.
  • 3. Kara, R. Comparison of marginal and internal fit of different CAD/CAM copings. Int J Dent Sci, 8(4),2020, 105-111.
  • 4. Ryniewicz, W., Bojko, Ł., Ryniewicz, A.M. The Impact of Sintering Technology and Milling Technology on Fitting Titanium Crowns to Abutment Teeth—In Vitro Studies. Materials, 15(17), 2022, 5835.
  • 5. Yan, X., Yin, S., Chen, C., Huang, C., Bolot, R., Lupoi, R., Liu, M. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. Journal of Alloys and Compounds, 764, 2018, 1056-1071.
  • 6. Tan, F. B., Song, J. L., Wang, C., Fan, Y. B., & Dai, H. W. Titanium clasp fabricated by selective lasermelting, CNC milling, and conventional casting: a comparative in vitro study. Journal of prosthodonticresearch, 63(1), 2019, 58-65.
  • 7. Bojko, Ł., Ryniewicz, W., Ryniewicz, A., Kot, M. Study of the impact of incremental technology on mechanical and tribological properties of biomaterials. Tribologia, 3, 2017, 29-38.
  • 8. Song, D.B., Han, M.S., Kim, S.C., Ahn, J., Im, Y.W., Lee, H.H. Influence of Sequential CAD/CAM Milling on the Fitting Accuracy of Titanium Three-Unit Fixed Dental Prostheses. Materials, 14(6),2021, 1401.
  • 9. Anzai, M., Kumasaka, T., Inoue, E., Seimiya, K., Kawanishi, N., Hayakawa, T., Ohkubo, C., Miura, H., Hoshi, N., Kimoto, K. Application of multi-directional forged titanium for prosthetic crown fabrication by CAD/CAM. Dent. Mater. J., 40(4), 2021, 1049-1054.
  • 10. Ryniewicz, A.M., Bojko, Ł., Ryniewicz, W.I. Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions. Acta Bioeng Biomech, 18(1), 2016, 121-127.
  • 11. Rajtukova, V. A comparison of the quality of dental crowns from TI-6AL-4V and CoCr alloys made with slm technology. Lékař a technika-Clinician and Technology, 48(1), 2018, 22-28.
  • 12. Fotovvati, B. Direct metal laser sintering of Ti-6Al-4V alloy: process-property-geometry empirical modeling and optimization. Doctoral dissertation, The University of Memphis, 2020.
  • 13. Ryniewicz, W., Ryniewicz, A.M., Bojko, Ł. The effect of a prosthetic crown’s design on the accuracy of mapping an abutment teeth’s shape. Measurement, 91, 2016, 620-627.
  • 14. Ryniewicz, W., Ryniewicz, A.M., Bojko, Ł. Evaluation of tightness prosthetic crowns depending on the technology of their execution, Przegląd Elektrotechniczny, 91(5), 2015, 45-48.
  • 15. Ryniewicz, W., Ryniewicz, A.M., Bojko, Ł. Modeling crowns and assessment of the accuracy of mapping the shape of prosthetic abutments, Przegląd Elektrotechniczny, 90(5), 2014, 146-149.
  • 16. Shah, S., Ashok, V., Ganapathy, D. Comparative evaluation of rapid prototyping and computer-aided milling in prosthodontics-A review. Drug Invention Today, 12(5), 2019.
  • 17. PN-EN ISO 6507-1:2007: Metals-Vickers hardness test – Part 1: Test method.
  • 18. Okazaki, Y., Ishino, A. Microstructures and mechanical properties of laser-sintered commercially pureTi and Ti-6Al-4V alloy for dental applications. Materials, 13(3), 2020, 609.
  • 19. Capellato, P., Vilela, F.B., Fontenele, A.H.P., Silva, G., da Silva, K.B., Carobolante, J.P.A., Sachs,D. Evaluation of Microstructure and Mechanical Properties of a Ti10Mo8Nb Alloy for Biomedical Applications. Metals, 12(7), 2022, 1065
  • 20. Zhang, S.Z., Liu, J.W., Zhao, Q.Y., Zhang, C.J., Bolzoni, L., Yang, F. Microstructure characterization of a high strength Ti–6Al–4V alloy prepared from a powder mixture of TiH2 and 60Al40V master alloy powders. Journal of Alloys and Compounds, 818, 2020, 152815.
  • 21. Hadadzadeh, A., Asadi, E., Shakil, S. I., Amirkhiz, B. S., Mohammadi, M., & Haghshenas, M. Indentation-derived mechanical properties of Ti-6Al-4V: Laser-powder bed fusion versus electron beam melting. Materials Letters, 301, 2021, 130273.
  • 22. Lizzul, L., Bertolini, R., Ghiotti, A., Bruschi, S. Turning of Additively Manufactured Ti6Al4V: Effect of the Highly Oriented Microstructure on the Surface Integrity. Materials, 14(11), 2021, 2842.
  • 23. Lu, Y., Turner, R., Brooks, J., Basoalto, H. Microstructural characteristics and computational investigation on electron beam welded Ti-6Al-4 V alloy. Journal of Materials Processing Technology, 288, 2021,116837.
  • 24. Sun, Y., Luo, G., Zhang, J., Wu, C., Li, J., Shen, Q., Zhang, L. Phase transition, microstructure and mechanical properties of TC4 titanium alloy prepared by plasma activated sintering. Journal of Alloys and Compounds, 741, 2018, 918-926.
  • 25. Yakushina, E., Reshetov, A., Semenova, I., Polyakova, V., Rosochowski, A., Valiev, R. The influence of the microstructure morphology of two phase Ti-6Al-4V alloy on the mechanical properties of diffusion bonded joints. Materials Science and Engineering: A, 726, 2018, 251-258.
  • 26. Bojko, Ł., Ryniewicz, A.M., Ryniewicz, W. Strength Tests of Alloys for Fixed Structures in Dental Prosthetics. Materials, 15(10), 2022, 3497.
  • 27. Chastand, V., Quaegebeur, P., Maia, W., Charkaluk, E. Comparative study of fatigue properties of Ti-6Al-4V specimens built by electron beam melting (EBM) and selective laser melting (SLM). Materials Characterization, 143, 2018, 76-81.
  • 28. Ishfaq, K., Abdullah, M., Mahmood, M.A. A state-of-the-art direct metal laser sintering of Ti6Al4 Vand AlSi10 Mg alloys: Surface roughness, tensile strength, fatigue strength and microstructure. Optics& Laser Technology, 143, 2021, 107366.
  • 29. Thakur, J., Parlani, S., Shivakumar, S., Jajoo, K. Accuracy of marginal fit of an implant-supported framework fabricated by 3D printing versus subtractive manufacturing technique: A systematic review and meta-analysis. The Journal of Prosthetic Dentistry, 2021.
  • 30. Presotto, A.G.C., Barão, V.A.R., Bhering, C.L.B., Mesquita, M.F. Dimensional precision of implant supported frameworks fabricated by 3D printing. The Journal of Prosthetic Dentistry, 122(1), 2019,38-45.
  • 31. Pacquet, W., Tapie, L., Mawussi, B., Boitelle, P. Volumetric and dimensional accuracy assessment of CAD-CAM–manufactured dental prostheses from different materials. J Prosthet Dent 2021.
  • 32. Jenkins, S.N., Oulton, T.H., Hernandez-Nava, E., Ghadbeigi, H., Todd, I., Goodall, R. Anisotropyin the mechanical behavior of Ti6Al4V electron beam melted lattices. Mechanics Research Communications, 100, 2019, 103400.
  • 33. Selvaraj, S.K., Prasad, S.K., Yasin, S.Y., Subhash, U.S., Verma, P.S., Manikandan, M., Dev, S.J.Additive manufacturing of dental material parts via laser melting deposition: A review, technical issues,and future research directions. Journal of Manufacturing Processes, 76, 2022, 67-78.
  • 34. Revilla-León, M., Meyer, M.J., Özcan, M. Metal additive manufacturing technologies: literature reviewof current status and prosthodontic applications. Int J Comput Dent, 22(1), 2019, 55-67.
  • 35. Barbin, T., Veloso, D.V., Silva, L.D.R., Borges, G.A., Presotto, A.G.C., Barão, V.A.R., Mesquita,M.F. 3D metal printing in dentistry: An in vitro biomechanical comparative study of two additive manufacturing technologies for full-arch implant-supported prostheses. Journal of the Mechanical Behavior of Biomedical Materials, 108, 2020, 103821.
  • 36. Methani, M.M., Cesar, P.F., de Paula Miranda, R.B., Morimoto, S., Özcan, M., Revilla-León, M. Additive manufacturing in dentistry: current technologies, clinical applications, and limitations. Current Oral Health Reports, 7(4), 2020, 327-334.
  • 37. Savencu, C.E., Șerban, C., Porojan, L. Adaptability evaluation of metal-ceramic crowns obtained by additive and subtractive technologies. Applied Sciences, 10(16), 2020, 5563.
  • 38. Bojko, Ł. Tests of Strength Parameters and Accuracy of Mapping the Shape of Metal Prosthetic Crowns Obtained in the CAD/CAM System. Ph.D. Thesis, AGH University of Science and Technology, Krakow, Poland, 2021.
  • 39. Bojko, Ł., Ryniewicz, W., Ryniewicz, A.M., Kot, M., Pałka, P. The influence of additive technologyon the quality of the surface layer and the strength structure of prosthetic crowns. Tribologia, 4, 2018,13-22.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bf81945-4bb1-4b32-bc56-5c1f5987fdca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.