PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemistry of the carboniferous coal-bearing series and the miocene cover within the Upper Silesian Coal Basin - a case study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Geochemia karbonu produktywnego i miocenu Górnośląskiego Zagłębia Węglowego - studium przypadku
Języki publikacji
EN
Abstrakty
EN
This paper presents geochemical data for 171 core samples of the Carboniferous coal-bearing series and the Miocene cove from the central part of the Upper Silesian Coal Basin. Major oxide concentrations (Al2O3, SiO2, Fe2O3, P2O5, K2O, MgO, CaO, Na2O, K2O, MnO, TiO2, and Cr2O3) were obtained using XRF. Trace and major elements (Mo, Cu, Pb, Zn, Ni, Co, U, Cr, V, Mn, As, Th, Sr, Cd, Sb, Bi, Ba, Ti, W, Zr, Ce, Nb, Ta, Be Sc) were analysed ICP-MS. The main goals of this study were to demonstrate the distribution, as well as the stratigraphical variability, of the selected elements and to determine whether chemostratigraphy tools could be effectively applied to analyze Carboniferous and Miocene deposits of the USCB. Geochemical studies have shown showed different geochemical features of the samples from the Carboniferous and the Miocene. The diversity is mainly expressed in the enrichment of Miocene sediments in Ca and Sr related to biogenic carbonate material. It was also stated that the concentrations of trace elements associated with the detrital fraction, such as Zn, Cr, Co, Ba, Ti, Zr, Nb, and Sc show slightly higher values in Carboniferous sediments. On the basis of the content of Ti, Zr, and Nb, as well as ratios such as Th/U, Zr/Th, Ti/Zr, and TiO2/K2O, units with different inputs of the terrigenous fraction can be identified in both Carboniferous and Miocene formations. The paper shows that chemostratigraphy can be used as a stratigraphic and correlation tool for the Carboniferous and the Miocene deposits of the USCB.
PL
W pracy przedstawiono dane geochemiczne dla 171 próbek skał osadowych z karbońskiej serii węglonośnej i pokrywy mioceńskiej z centralnej części Górnośląskiego Zagłębia Węglowego. Udziały głównych tlenków (Al2O3, SiO2, Fe2O3, P2O5, K2O, MgO, CaO, Na2O, K2O, MnO, TiO2 i Cr2O3)oznaczono za pomocą XRF. Pierwiastki główne i śladowe (Mo, Cu, Pb, Zn, Ni, Co, U, Cr, V, Mn, As, Th, Sr, Cd, Sb, Bi, Ba, Ti, W, Zr, Ce, Nb, Ta, Be i Sc) analizowano przy pomocy ICP-MS. Głównym celem badań była analiza koncentracji i zmienności stratygraficznej wybranych pierwiastków głównych i śladowych, jak również ocena możliwości stosowania chemostratygrafii w analizie karbońskich i mioceńskich osadów GZW. Badania geochemiczne wykazały odmienne właściwości geochemiczne próbek z karbonu produktywnego oraz miocenu. Zróżnicowanie to wyraża się głównie wzbogaceniem osadów miocenu w Ca i Sr, związane z biogenicznym materiałem węglanowym. Stwierdzono również, że stężenia pierwiastków śladowych, związanych z frakcją detrytyczną, takich jak: Zn, Cr, Co, Ba, Ti, Zr, Nb, Sc, wykazują nieco wyższe wartości w osadach karbonu. Na podstawie koncentracji pierwiastków Ti, Zr i Nb oraz wskaźników geochemicznych Th/U, Zr/Th, Ti/Zr, TiO2/K2O można zidentyfikować jednostki o różnym udziale frakcji terygenicznej, zarówno w osadach karbonu i miocenu. W pracy wykazano, że chemostratygrafia może być z powodzeniem wykorzystywana jako narzędzie stratygraficzne i korelacyjne dla utworów karbonu i miocenu Górnośląskiego Zagłębia Węglowego.
Twórcy
Bibliografia
  • [1] Aleksandrowicz, S.W. 1997. Lithostratygraphy of the Miocene Deposits in the Gliwice Area. Bulletin of the Polish Academy of Sciences. Earth Sciences 45, pp. 2-4.
  • [2] Bayon et al. 2020 – Bayon, G., Lambert, T., Vigier, N., De Deckker, P., Freslon, N., Jang, K., Larkin, C.S., Piotrowski, A.M., Tachikawa, K., Thollon, M. and Tipper, E.T. 2020. Rare earth element and neodymium isotope tracing of sedimentary rock weathering. Chemical Geology 553, DOI: 10.1016/j.chemgeo.2020.119794.
  • [3] Bukowski et al. 2018 – Bukowski, K., Sant, K., Pilarz, M., Kuiper, K. and Garecka, M. 2018. Radioisotopic age and biostratigraphic position of a lower Badenian tuffite from the western Polish Carpathian Foredeep Basin (Cieszyn area). Geological Quarterly 62, pp. 303-318, DOI: 10.7306/gq.1402.
  • [4] Ciesielczuk et al. 2021 – Ciesielczuk, J., Fabiańska, M.J., Misz-Kennan, M., Jura, D., Filipiak, P. and Matuszewska, A. 2021. The Disappearance of Coal Seams Recorded in Associated Gangue Rocks in the SW Part of the Upper Silesian Coal Basin, Poland. Minerals 11(7), DOI: 10.3390/min11070735.
  • [5] Craigie et al. 2016 – Craigie, N.W., Pierre, B. and Ahmed, K. 2016. Chemostratigraphy and biostratigraphy of Devonian, Carboniferus and Permian sediments encountered in the eastern Saudi Arabia: An integrated approach to reservoir correlation. Marine and Petroleum Geology 72, pp. 156-178.
  • [6] Gonera M., 2018. Coiling direction in Middle Miocene globorotaliids (Foraminiferida) – a case study in the Paratethys (Upper Silesia Basin, Poland). Geological Quarterly 62(1), pp. 155-171, DOI: 10.7306/gq.1397.
  • [7] Hanak, B. and Kokowska-Pawłowska, M. 2006. Variability of the trace elements in the coal lithotypes and their ashes presented on the background of the 630 coal seam profiles (U.S.C.B.). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 22(3 spec.), pp. 69-77.
  • [8] Hanak et al. 2011 – Hanak, B., Kokowska-Pawłowska, M. and Nowak, J. 2011. Trace elements in coal shale from 405 coal seam (Pierwiastki śladowe w łupkach węglowych z pokładu 405). Górnictwo i Geologia-Mining and Geology 6 (4), pp. 27-38.
  • [9] Heliasz, Z. and Manowska, M., 1991. Aggravating minerals as sources of detrital material in the Dębowiec Formation (Miocene, western part of the Carpathian Foredeep) (Minerały ciężkie jako wskaźniki źródła materiału detrytycznego w formacji dębowieckiej (miocen, zachodnia część zapadliska przedkarpackiego)). Annales Societatis Geologorum Poloniae 61, pp. 77-95 (in Polish).
  • [10] Jureczka, J. and Kotas, A. 1995. Upper Silesian Coal Basin. [In:] Zdanowski, A. And Żakowa, H. (eds) The Carboniferous system in Poland. Prace Państwowego Instytutu Geologicznego 148, pp. 164-173.
  • [11] Kędzior, S. and Dreger, M. 2019. Methane occurrence, emissions and hazards in the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology 211, DOI: 10.1016/j.coal.2019.103226.
  • [12] Kokowska-Pawłowska, M. 2015. Petrographic and mineral variability of the rocks accompanying selected coal seams of the Poruba beds and their influence of the trace elements content. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 31(2), pp. 73-92, DOI: 10.1515/gospo-2015-0018.
  • [13] Kokowska-Pawłowska, M. and Krzeszowska, E. 2023. Toxic elements in carboniferous sedimentary rocks from the Upper Silesian Coal Basin. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(1), pp. 63-86, DOI: 10.24425/gsm.2023.144629.
  • [14] Kombrink et al. 2008 – Kombrink, H., Van Os, B.J.H., Van der Zwan, C.J. and Wong, T.E. 2008. Geochemistry of marineand lacustrine bands in the Upper Carboniferous of The Netherlands. Netherlands Journal of Geosciences 87(4), pp. 309-322, DOI: 10.1017/S0016774600023374.
  • [15] Koteras et al. 2020 – Koteras, A., Chećko, J., Urych, T., Magdziarczyk, M. and Smoliński, A. 2020. An Assessment of the Formations and Structures Suitable for Safe CO2 Geological Storage in the Upper Silesia Coal Basin in Poland in the Context of the Regulation Relating to the CCS. Energies 13(1), DOI: 10.3390/en13010195.
  • [16] Krzeszowska, E. and Gonera, M. 2022. Coal and dispersed organic matter in the Miocene sediments of the Upper Silesian Coal Basin (Poland) – new data. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38(3), pp. 121-136, DOI: 10.24425/gsm.2022.142789.
  • [17] Krzeszowska et al. 2022 – Krzeszowska, E., Kokowska-Pawłowska, M. and Krzeszowski, Ś. 2022. Distribution of the selected critical elements in the Carboniferous coal-bearing series of the Upper Silesian Coal Basin and the Lublin Coal Basin (Poland). Acta Geologica Sinica-English Edition 96(1), pp. 273-292, DOI: 10.1111/1755-6724.14811.
  • [18] Majer-Durman, A. 2014. Petrographic composition and origin of the Dębowiecki conglomerate, Carpathian Foredeep (Poland) – preliminary results. Geology, Geophysics & Environment 40(1), pp. 102.
  • [19] Morga, R. 2007. Structure of variability of phosphorus content in exploited seams of bituminous coal in the Pniówek Mine (Struktura zmienności zawartości fosforu w eksploatowanych pokładach węgla kamiennego KWK Pniówek). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 23, pp. 29-48 (in Polish).
  • [20] Oszczypko, N. 2006. Late Jurassic-Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly 50(1), pp. 169-194.
  • [21] Oszczypko, N. and Oszczypko-Clowes, M. 2012. Stages of development in the Polish Carpathian Foredeep basin. Central European. Journal of Geosciences 4(1), pp. 138-162, DOI: 10.2478/s13533-011-0044-0.
  • [22] Parzentny, H.R. and Róg, L. 2020. Initial assessment of variability in the modes of occurrence of some trace elements in coal seams with vertical profiles in the Upper Silesian Coal Basin in Poland. Archives of Mining Sciences 65(4), pp. 723-736, DOI: 10.24425/ams.2020.134143.
  • [23] Pearce et al. 1999 – Pearce, T.J., Besly, B.M., Wray, D.S. and Wright, D.K. 1999. Chemostratigraphy: A Method to Improve Interwell Correlation in Barren Sequences – A Case Study Using Onshore Duckmantian/Stephanian Sequences (West Midlands, U.K.). Sedimentary Geology 124, pp. 197-220.
  • [24] Pearce et al. 2005 – Pearce T.J., Mclean D., Wright D.K., Jeans C.J. and Mearns E.W. 2005. Stratigraphy of the Upper Carboniferous Schooner Formation, southern North Sea: chemostratigraphy, mineralogy, palynology and Sm-Nd isotope analysis. [In:] Collinson J.D., Evans D.J., Holliday D.W., Jones N.S. (eds.): Carboniferous Hydrocarbon Geology: The Southern North Sea and Surrounding Onshore Areas: Yorkshire Geological Society, Occasional Publications Series 7, pp. 165-182.
  • [25] Pearce et al. 2010 – Pearce, T.J., Martin, J.H., Cooper, D. and Wray, D.S. 2010. Chemostratigraphy of Upper Carboniferous (Pennsylvanian) sequences from the southern North Sea (United Kingdom). [In:] Ratcliffe K.T., Zaitlin B.A. (Editors). Application of Modern Stratigraphic Techniques: Theory and Case Histories, Special Publication 94: SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma, pp. 109-129, DOI: 10.2110/sepmsp.094.109.
  • [26] Peryt, D. 2013. Foraminiferal record of the Middle Miocene climate transition prior to the Badenian salinity crisis in the Polish Carpathian Foredeep Basin (Central Paratethys). Geological quarterly 57(1), pp. 141-164, DOI: 10.7306/gq.1080.
  • [27] Playter et al. 2018 – Playter, T., Corlett, H., Konhauser, H., Robbins, L., Rohais, S., Crombez, V., MacCormack, K., Rokosh, D., Prenoslo, D., Furlong, C.M., Pawlowicz, J., Gingras, M., Lalonde, S., Lyster, S. and Zonneveld, J.-P. 2018. Clinoform identification and correlation in fine grained sediments: A case study using the Triassic Montney Formation. Sedimentology 65(1), pp. 263-302, DOI: 10.1111/sed.12403.
  • [28] Ramkumar et al. 2015 – Ramkumar, M., Alberti, M. and Fürsich, F.T. 2015. Chemostratigraphy of the Dhosa Oolite Member (Oxfordian), Kachchh Basin, western India: Implications for completeness of the stratigraphic record and correlation with global oolite peak. [In:] Ramkumar, M. (Ed.), Chemostratigraphy: Concepts, Techniques and Applications. Elsevier, pp. 309-340.
  • [29] Ramkumar et al. 2021 – Ramkumar, M., Nagarajan, R. and Santosh, M. 2021. Advances in sediment geochemistry and chemostratigraphy for reservoir characterization. Energy Geoscience 2(4), pp. 308-326, DOI: 10.1016/j.engeos.2021.02.001.
  • [30] Ratcliffe et al. 2016 – Ratcliffe, K., Playton, T., E., Montgomery, P., Wray, D., Caulfield-Kerney S., Tohver, E., Hocking, R.M., Haines, P., Kirschvink, J. and Yan, M. 2016. Using elemental chemostratigraphy on mid-late frasnian Platform-top successions from the lennard shelf outcrops, Canning basin, western Australia. [In:] New Advances in Devonian Carbonates: Outcrop Analogs, Reservoirs and Chronostratigraphy, Special Publication 107, pp. 319-331.
  • [31] Sechman et al. 2020 – Sechman, H., Kotarba, M.J., Kędzior, S., Kochman, A. and Twaróg, A. 2020. Fluctuations in methane and carbon dioxide concentrations in the near-surface zone and their genetic characterization in abandoned and active coal mines in the SW part of the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology 227, DOI: 10.1016/j.coal.2020.103529.
  • [32] Solik-Heliasz, E. 2011. Safety and effectiveness of carbon dioxide storage in water-bearing horizons of the Upper Silesian Coal Basin region. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 27(3), pp. 141-149.
  • [33] Sprague et al. 2009 – Sprague, R.A., Melvin, J.A., Conradi, F.G., Pearce, T.J., Dix, M.A., Hill, S.D. and Canham, H. 2009. Integration of Core-based chemostratigraphy and petrography of the Devonian jauf sandstones. In: Uthmaniya Area, Ghawar Field, Eastern Saudi Arabia. AAPG. Search and Discovery Article 20065, pp. 34.
  • [34] Strzałkowska, E. 2021. Fly ash – A valuable material for the circular economy. Gospodarka Surowcami Mineralnymi – Mineral Resources Manage 37, pp. 49-62, DOI: 10.24425/gsm.2021.137563.
  • [35] Strzałkowska, E. 2022. Rare earth elements and other critical elements in the magnetic fraction of fly ash from several Polish power plants. International Journal of Coal Geology 258, pp. 1-13, DOI: 10.1016/j.coal.2022.104015.
  • [36] Strzałkowska, E. 2023. Ashes qualified as a source of selected critical elements (REY, Co, Ga, V). Energies 16(8), DOI: 10.3390/en16083331.
  • [37] Wei et al. 2003 – Wei, G., Liu, Y., Li, X., Shao, L. and Liang, X. 2003. Climatic impact on Al, K, Sc and Ti in marine sediments: evidence from ODP Site 1144, South China Sea. Geochemical Journal 37(5), pp. 593-602, DOI: 10.2343/geochemj.37.593.
  • [38] Weissert et al. 2008 – Weissert, H., Joachimski, M. and Sarnthein, M. 2008. Chemostratigraphy. Newsletters on Stratigraphy 42, pp. 145-179, DOI: 10.1127/0078-0421/2008/0042-0145.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bf7a4ff-d8b2-4e41-a607-24bcf3d367d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.