Edward SOBCZAK, Tomasz RINGEL

e-mail: tomek@utp.edu.pl

Katedra Technologii i Aparatury Przemysłu Chemicznego i Spożywczego, Wydział Technologii i Inżynierii Chemicznej, Uniwersytet Technologiczno-Przyrodniczy, Bydgoszcz

Zastosowanie modeli matematycznych równowag destylacyjnych dla azeotropów ujemnych i dodatnich do projektowania procesów rektyfikacji

Wprowadzenie

Dwuskładnikowe równowagi destylacyjne można podzielić na spełniające prawo *Raoulta*, które można opisać za pomocą zależności ułamka molowego składnika A w parze (y_A) od ułamka molowego tego składnika w cieczy (x_A):

$$y_A = \frac{\alpha x_A}{1 + (\alpha - 1)x_A} \tag{1}$$

oraz nie spełniające prawa *Raoulta*, będące azeotropem dodatnim lub ujemnym [*Serwiński*, 1982; *Ciborowski*, 1976].

W niniejszej pracy przedstawiono wyniki obliczeń parametrów określających równowagi destylacyjne dla azeotropów dodatnich i ujemnych w zakresie stężeń składnika bardziej lotnego: $x_A \in [0; a_z]$ lub $[a_z, 1]$. Korzystając z modeli opracowanych w pracy [*Sobczak i Ringel, 2013*], dla składnika bardziej lotnego A, wyznaczono modele matematyczne równowag destylacyjnych dla składnika trudno lotnego B w zakresie $y_A < x_A$. Dla wszystkich układów destylacyjnych dla lotności względnej α i stężenia azeotropu a_z oraz $y_A > x_A$ i dla $\alpha' = 1/\alpha$ oraz $y_B > x_B$ określono analitycznie ilości półek kolumny rektyfikacyjnej. Następnie wyznaczono zależności liczby półek *n* od lotności względnej α i α' .

Wyznaczanie modeli matematycznych

W pracy [Sobczak i Ringel, 2013] opracowano modele matematyczne równowag dla azeotropów dodatnich i ujemnych i na ich podstawie zbudowano model matematyczny procesu destylacji.

W niniejszej pracy podjęto próbę wykorzystania tych modeli do opracowania komputerowej metody wyznaczania liczby półek kolumny rektyfikacyjnej.

Do projektowania procesów rektyfikacji dla układów destylacyjnych skorzystano z danych zawartych w literaturze i przyjęto stan cieplny surówki $e = (c\Delta T + r)/r = 1,11$.

Azeotrop dodatni w zakresie stężeń $x_A \in [0; a_z]$ dla $y_A > x_A$

W celu zaprojektowania procesu rektyfikacji dla układów destylacyjnych z azeotropem dodatnim dla danych równowagowych zawartych w tab. 1, wyznaczono punkt przecięcia (x_m, y_m) linii równowagi z linią e:

$$y_A = \frac{\alpha x_A}{1 + (\alpha - 1)\frac{x_A}{a_z}}$$
(2)

$$y_{A} = \frac{e}{e-1} x_{A} - \frac{x_{s}}{e-1}$$
(3)
 $x_{s} = 0.22$ i $e = 1.11$

dla

a następnie obliczono optymalny skład cieczy i pary dla półki zasilanej:

$$x_z = \frac{x_s - x_m}{2} \tag{4}$$

$$y_z = \frac{x_s - y_m}{2} \tag{5}$$

Dla przyjętego składu surówki destylatu i cieczy wyczerpanej:

$$x_D = y_D = a_z - 0.02;$$
 $x_w = y_w = 0.02$

wyznaczono równania górnej i dolnej linii operacyjnej:

dla
$$x_n > x_z$$
 $y_{n+1} = \frac{x_D - y_z}{x_D - x_z} (x_n - x_z) + y_z$ (6)

Tab. 1. Zestawienie parametrów α i a_z dla azeotropów dodatnich dla $y_A > x_A \land x_A \in [0; a_z]$

Lp.	Układ [źródlo literaturowe]	[kPa]	a_z	α	n
1.	1-propanol – woda [Vercher i in., 1999]	100,00	0,42	34,25	3
2.	2-butanon – octan izopropenylu [<i>Cui i in., 2008</i>]	101,30	1,00	1,62	24
3.	2-butanon – węglan dimetylu	101,30	0,87	1,66	22
	[Pereiro i in., 2005]				_
4.	2-METHF – kumen [<i>Rattan i in., 2008</i>]	97,30	1,00	6,81	7
5.	2-pentanon – 3-pentanol [Aucejo i in., 2003]	101,30	0,97	1,66	22
6.	aceton – heksan [<i>Acosta i in., 2002</i>]	101,32	0,63	7,25	6
7.	aceton – metanol [<i>Orchilles i in., 2007</i>]	100,00	0,72	2,20	14
8.	aceton – octan etylu [Acosta i in., 2002]	101,32	0,96	2,22	15
9.	aceton – octan izopropenylu [Cui i in., 2008]	101,30	1,00	3,47	10
10.	aceton – węglanu dimetylu [Pereiro i in., 2005]	101,30	1,00	3,15	11
11.	akrylonitryl – benzen [<i>de Haan, 1996</i>]	30,03	0,50	1,91	15
12.	akrylonitryl – cykloheksan [<i>de Haan</i> , 1996]	30,03	0,49	20,33	4
13.	akrylonitryl – heksan [de Haan, 1996]	30,04	0,39	11,74	4
14.	akrylonitryl – toluen [de Haan, 1996]	26,94	0,94	4,86	8
15.	benzen – 2,2,2-trifluoroetanol [Atik, 2007]	102,00	0,47	5,56	6
16.	DIPE – 1-propanol	101,32	0,90	5,17	8
	[Gomez-Marigliano i in., 2010]			1 = 0	
17.	DMC – EMC [Zhang i in., 2010]	101,30	0,98	1,78	20
18.	EMC – DEC [<i>Zhang i in., 2010</i>]	101,30	1,00	1,66	23
19.	etanol – EMC [Zhang i in., 2010]	101,30	0,86	6,52	7
20.	eter – n-heptan [Vijayaraghavan i in., 1967]	101,32	1,00	2,42	14
21.	eter – n-heptan [Vijayaraghavan i in., 1967]	202,65	1,00	2,35	14
22.	eter – n-heptan [Vijayaraghavan i in., 1967]	303,97	0,74	4,00	9
23.	eter dibutylowy – o-ksylen [Thiede i in., 2010]	50,60	0,66	1,14	75
24.	heksan – octan etylu [Acosta i in., 2002]	101,32	0,63	3,04	10
25.	HFC–4310mee – 2-metylofuran [<i>Loras i in., 2002</i>]	35,00	0,52	5,63	6
26.	IBA – izooktan [Martínez-Soria i in., 1999]	101,30	0,32	4,68	6
27.	IBA – metylocykloheksan [Martínez-Soria i in., 1999]	101,30	0,33	5,51	5
28.	IBA – toluen [Martínez-Soria i in., 1999]	101,30	0,47	3,53	8
29.	keton dietylowy – 3-pentanol [Auceio i in., 2003]	101.30	0.97	1.65	22
30.	kumen – N. N-dimetyloacetamid [<i>Gill i in., 2009</i>]	97.30	0.71	4.30	8
31.	kumen – N-metyloacetamid [<i>Gill i in., 2009</i>]	97.30	0.86	22.37	4
32.	kwas laurynowy – kwas mirystynowy [Monick i in 1946]	0,53	0,96	1,69	16
33.	laurynian metylu – kwas laurynowy	0,53	1,00	9,44	6
34	metanol – benzen [Serwiński 1965]	101 32	0.60	25 51	4
35	metanol – EMC [$Zhang i in 2010$]	101,32	0.93	9.21	6
36	MTBE – 1-propagol	101,30	0.98	6.04	7
50.	[Gomez-Marigliano i in., 2010]	101,52	0,70	0,04	
37.	N, N-dimetyloformamid – 1-chloro-2-etylo- heksan [<i>Graczova i Steltenpohl, 2008</i>]	79,99	0,74	2,85	11
38.	N, N-dimetyloformamid – 2-etylo-1-ol [Graczova i Steltenpohl, 2008]	79,99	1,00	1,86	19
39.	n-heptan – alkohol n-butylowy [<i>Vijavaraghavan i jn 1967</i>]	192,65	0,71	6,28	7
40.	n-heptan – alkohol n-butylowy	293,97	0,64	4,80	7
41	n-hentan - alkohol n-hutylowy	395 20	0.60	4 4 2	8
71.	[Vijayaraghavan i in., 1967]	5,5,29	0,00	т,т <i>2</i>	0

Nr 3/2014

INŻYNIERIA I APARATURA CHEMICZNA

				Tab. 1	l. cd.
Lp.	Układ [źródło literaturowe]	Ciśn. [kPa]	a _z	α	п
42.	n-heptan – alkohol n-butylowy [<i>Vijayaraghavan i in., 1967</i>]	496,62	0,56	4,47	7
43.	octan izopropenylenu – acetyloaceton [Cui i in., 2008]	101,30	0,97	4,16	9
44.	octan metylu – metanol [Cai i in., 2011]	101,30	0,62	3,42	9
45.	octanu metylu – izopropylobenzen [Kapoor i in., 2008]	97,30	1,00	16,23	5
46.	palmitynian metylu – octan stearynian [<i>Monick i in., 1946</i>]	0,53	1,00	2,37	14
47.	TAME – 1-propanol [<i>Gomez-Marigliano i in., 2010</i>]	101,32	0,72	2,92	11
48.	TAME – tert-amylu-eter – 1-butanol [Arce i in., 2000]	101,32	0,96	3,89	9
49.	tetrachloroetylen – 1-pentanol [Dejoz i in., 1999]	20,00	0,88	7,43	6
50.	tetrachloroetylen – 2-metylo-1-butanol [Dejoz i in., 1999]	20,00	0,82	5,82	7
51.	tetrachloroetylen – 2-metylo-1-butanol [Dejoz i in., 1999]	100,00	0,67	3,49	9
52.	tetrachloroetylen – 3-metylo-1-butanol [Dejoz i in., 1999]	20,00	0,84	6,42	7
53.	tetrahydrofuran-(1-metyloetylo)benzen [Gill i in., 2008]	97,99	1,00	8,29	6
54.	tetrahydropiran-(1-metyloetylo)benzen [Gill i in., 2008]	97,99	1,00	4,87	8
55.	toluen – 1-chloro-2-etyloheksan [Graczova i Steltenpohl, 2008]	79,99	1,00	5,11	8
56.	toluen – 2,2,2-trifluoroetanol [Atik, 2007]	102,00	0,21	3,38	5
57.	toluen – 2-etylo-1-ol [Graczova i Steltenpohl, 2008]	79,99	1,00	8,35	6
58.	węglan dimetylu – 2-pentanon [<i>Pereiro i in., 2005</i>]	101,30	0,87	1,84	18

$$x_n < x_z \qquad \qquad y_{n+1} = \frac{y_z - y_w}{x_z - x_w} (x_n - x_w) + x_w \tag{7}$$

Stężenia równowagowe na poszczególnych półkach wyznaczono z zależności:

$$x_n = \frac{y_n}{\alpha + (1 - \alpha)\frac{y_n}{\alpha_n}}$$
(8)

gdzie: $x_n = x_A$ $y_n = y_A$

dla

Liczbę półek teoretycznych obliczono opracowana, własną metodą komputerową oraz wykreślono trójkąty półek rektyfikacyjnych według schematu 1 (Tab. 2):

Tab. 2. Schemat wyznaczania stężeń cieczy x_n na podstawie równ. (8), (15), (20) i (25) oraz pary y_{n+1} wg równ. (6) i (7) dla górnej i dolnej linii operacyjnej kolumny rektyfikacyjnej

x _n	x _D	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	
\mathcal{Y}_{n+1}	y_D	<i>Y</i> ₂	<i>y</i> ₃	<i>Y</i> ₄	

Wyniki obliczeń wyznaczonej liczby półek n dla danych równowagowych α i a_z zestawiono w tab. 1 i przedstawiono na rys. 1.

Azeotrop ujemny w zakresie stężeń $x_A \in [0; a_7]$ dla $y_A < x_A$

Dla układów destylacyjnych z azeotropem ujemnym dla danych równowagowych zawartych w tab. 3, opisanych jako:

$$x_{A} = \frac{\alpha' y_{A}}{1 + (\alpha' - 1)\frac{y_{A}}{a_{z}}}$$
(9)

dla:

 $\alpha' = \frac{1}{\alpha}$ wyznaczono dla składnika B zależność równowagową oraz linię e:

$$g = 1 - \frac{\alpha'(1 - y_B)}{1 + (\alpha' - 1)\frac{1 - y_B}{a_-}}$$
(11)

$$y_B = \frac{e}{e - 1} x_B - \frac{x_{Bs}}{e - 1}$$
(12)

gdzie: $x_B = 1 - x_A$; $y_B = 1 - y_A$ dla: $x_{Bs} = 1 - a_z + 0.22a_z$ oraz e = 1.11

 x_{E}

Rozwiązując układ równań (11) i (12) uzyskano punkt przecięcia (x_m, y_m) linii *e* z linią równowagi dla składnika B.

Współrzędne (x_z, y_z) przecięcia linii operacyjnej górnej i dolnej obliczono z wzorów:

$$x_z = \frac{x_{Bs} + x_m}{2} \tag{13}$$

$$y_z = \frac{x_{Bs} + y_m}{2} \tag{14}$$

Równanie górnej i dolnej linii operacyjnej określono za pomocą równ. (6) i (7) dla stężeń (x_z , y_z) oraz $x_w = 1 - a_z + 0.02$; $x_D = 1 - 0.02$ Stężenia równowagowe składnika B na poszczególnych półkach

określa zależność:

$$x_n = 1 - \frac{\alpha (1 - y_n)}{1 + (\alpha' - 1) \frac{1 - y_n}{a_z}}$$
(15)

gdzie: $x_n = x_B$ $y_n = y_B$

0

0

١

Liczbę półek teoretycznych dla przykładowego układu wyznaczono według schematu 1 (Tab. 2) i przedstawiono na rys. 2.

Rys. 2. Zależność składu cieczy od składu pary dla układu metanol - dietyloamina ($a' = 2,20, a_z = 0,75$), z wyznaczonymi liniami operacyjnymi i półkami kolumny rektyfikacyjnej według schematu 2 (Tab. 4) dla azeotropu ujemnego $(y_A < x_A)$ w zakresie $x_A \in [0; a_z]$

Wyniki obliczeń wyznaczonej liczby półek dla a'i az przedstawiono w tab. 3 i na rys. 3.

Tab. 3. Zestawienie parametrów $\alpha = 1/\alpha$ ' i a_z dla azeotropów ujemnych dla $v_4 \le x_4 \land x_4 \in [0; a_n]$

Lp.	Układ [źródło literaturowe]	Ciśn. [kPa]	a_z	α	п			
1.	aceton – chloroform [KDB, 2013]	101,3	0,35	0,62	17			
2.	aceton - chloroform [Serwiński, 1965]	101,32	0,38	0,66	21			
3.	metanol – dietyloamina [Aucejo i in., 1997]	101,3	0,75	0,46	14			
4.	woda – kwas mrówkowy [KDB, 2013]	101,32	0,42	0,57	16			
5.	woda – kwas mrówkowy [KDB, 2013]	26,66	0,45	0,39	11			
6.	woda – kwas mrówkowy [KDB, 2013]	9,33	0,5	0,31	9			
$ \begin{array}{c} n & 40 \\ 30 \\ 20 \\ 10 \end{array} \right $ n = 29,490; 1,01 R ² = 0,97								

2

3

4

1

str. 177

(10)

INŻYNIERIA I APARATURA CHEMICZNA

Nr 3/2014

Tab. 4. Schemat 2 wykreślania *wierzchołków trójkątów* określających stężenia dla półek kolumny rektyfikacyjnej

<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₂	<i>x</i> ₃	
<i>y</i> ₁	<i>Y</i> 1	<i>y</i> ₂	y_2	<i>y</i> ₃	<i>y</i> ₃	

Azeotrop dodatni w zakresie stężeń $x_A \in [a_z; 1]$ dla $y_A < x_A$

Dla układów destylacyjnych z azeotropem dodatnim dla danych równowagowych zawartych w tab. 5, wyznaczono zależność równowagową oraz linię *e*:

$$y_{B} = \frac{\alpha' x_{B}}{1 + \frac{\alpha' - 1}{1 - a_{-}} x_{B}}$$
(16)

$$y_B = \frac{e}{e-1} x_B - \frac{x_{Bs}}{e-1}$$
(17)

dla $x_{Bs} = 0,22(1 - a_z)$ i e = 1,11 oraz wyznaczono punkt przecięcia (x_{mr}, y_m) linii e z linią równowagi dla składnika B, rozwiązując układ równ. (16) i (17).

Następnie obliczono stężenia (x_z, y_z) z wzorów:

$$x_z = \frac{x_{Bs} + x_m}{2} \tag{18}$$

$$y_z = \frac{x_{Bs} + y_m}{2} \tag{19}$$

Równanie górnej i dolnej linii operacyjnej wyznaczono na podstawie zależności (6) i (7) dla $x_w = 0.02$ i $x_D = 1 - a_z - 0.02$ oraz wartości x_z i y_z z zależności (18) i (19).

Stężenia równowagowe składnika B na poszczególnych półkach określa zależność:

$$x_n = \frac{y_n}{\alpha' + \frac{1 - \alpha'}{1 - a_z} y_n}$$
(20)

gdzie: $x_n = x_B$ oraz $y_n = y_B$

Liczbę półek teoretycznych wyznaczono według schematu 1 (Tab. 2). Wyniki obliczeń liczby półek n dla α i a_z zestawiono w tab. 5 i na rys. 4.

Tab. 5. Zestawienie parametrów $\alpha = 1/\alpha'$ i a_z dla azeotropów dodatnich
dla $y_A < x_A \land x_A \in [a_z; 1]$

Lp.	Układ [źródło literaturowe]	Ciśn. [kPa]	a _z	α	п
1.	aceton – heksan [Acosta i in., 2002]	101,32	0,65	0,24	7
2.	aceton - metanol [Orchilles i in., 2007]	100,00	0,79	0,76	24
3.	akrylonitryl – benzen [de Haan, 1996]	30,03	0,58	0,64	19
4.	akrylonitryl – cykloheksan [de Haan, 1996]	30,03	0,48	0,14	6
5.	akrylonitryl – heksan [de Haan, 1996]	30,04	0,36	0,08	5
6.	Etanol – MTBE [<i>Mejia i in., 2010</i>]	50,00	0,09	0,17	7
7.	heksan – octan etylu [Acosta i in., 2002]	101,32	0,67	0,53	13
8.	HFC-4310mee – 2-metylofuran [Loras i in., 2002]	35,00	0,56	0,57	16
9.	IBA – izooktan [Martínez -Soria i in., 1999]	101,30	0,33	0,19	7
10.	IBA – metylocykloheksan [Martínez-Soria i in., 1999]	101,30	0,34	0,22	8
11.	IBA – toluen [Martínez-Soria i in., 1999]	101,30	0,49	0,40	11
12.	kumen – N,N-dimetyloacetamid [<i>Baljinder</i> , 2009]	97,30	0,74	0,16	5
13.	kumen – N-metyloacetamid [Baljinder, 2009]	97,30	0,88	0,53	8
14.	metanol – benzen [Serwiński, 1965]	101,32	0,58	0,22	7
15.	N, N-dimetyloformamid – 1-chloro-2-etylo- heksan [<i>Graczova i Steltenpohl, 2008</i>]	79,99	0,83	0,44	8
16.	n-heptan – alkohol n-butylowy [<i>Vijayaraghavan i in., 1967</i>]	192,65	0,70	0,26	7
17.	n-heptan – alkohol n-butylowy [Vijayaraghavan i in., 1967]	293,97	0,62	0,23	7

18.	n-heptan – alkohol n-butylowy [<i>Vijayaraghavan i in., 1967</i>]	395,29	0,60	0,19	6
19.	n-heptan – alkohol n-butylowy [<i>Vijayaraghavan i in., 1967</i>]	496,62	0,57	0,18	6
20.	octanu metylu – metanol [Cai i in., 2011]	101,30	0,66	0,47	12
21.	TAME – 1-propanol [Gomez-Marigliano i in., 2010]	101,32	0,77	0,65	16
22.	tetrachloroetylen – 1-pentanol [Dejoz i in., 1999]	20,00	0,89	0,32	5
23.	tetrachloroetylen – 2-metylo-1-butanol [Dejoz i in., 1999]	20,00	0,82	0,23	5
24.	tetrachloroetylen – 2-metylo-1-butanol [Dejoz i in., 1999]	100,00	0,69	0,29	7
25.	tetrachloroetylen – 3-metylo-1-butanol	20,00	0,84	0,24	5

Rys. 4. Zależność liczby półek teoretycznych od lotności względnej dla azeotropów dodatnich ($y_A < x_A$) w zakresie stężeń $x_A \in [a_z; 1]$

Azeotrop ujemny w zakresie stężeń $x_A \in [a_z; 1]$ dla $y_A > x_A$

Dla układów destylacyjnych z azeotropem ujemnym dla danych równowagowych zawartych w tab. 6, wyznaczono zależność równowagową oraz linię *e*:

$$y_A = \frac{\alpha(x_A - a_z)}{1 + \frac{(\alpha - 1)(x_A - a_z)}{1 - a_z}} + a_z$$
(21)

$$y_A = \frac{e}{e - 1} x_A - \frac{x_s}{e - 1}$$
(22)

dla $x_s = 0.22(1 - a_z) + a_z$ i e = 1.11 oraz wyznaczono punkt przecięcia (x_{my}, y_m) linii e z linią równowagi dla składnika A.

Następnie wyznaczono współrzędne (x_z, y_z) przecięcia linii operacyjnej górnej i dolnej z wzorów:

$$x_z = \frac{x_s + x_m}{2} \tag{23}$$

$$y_z = \frac{x_s + y_m}{2} \tag{24}$$

Równanie górnej i dolnej linii operacyjnej określono na podstawie zależności (6) i (7) dla $x_w = a_z + 0.02$ i $x_D = 1 - 0.02$ oraz wartości stężeń x_z i y_z .

Stężenia równowagowe składnika B na poszczególnych półkach określono zgodnie z zależnością:

$$x_n = 1 - \frac{\alpha(1 - y_n)}{1 + \frac{\alpha - 1}{1 - a_z}(1 - y_n)}$$
(25)

gdzie: $x_n = x_B$ i $y_n = y_B$

Liczbę półek teoretycznych wyznaczono według schematu 1 (Tab. 2). Wyniki obliczeń liczby półek n dla α i a_z zestawiono w tab. 6 i na rys. 5.

Tab. 6. Zestawienie parametrów α i a_z dla azeotropów ujemi	ıych
dla $y_A > x_A \land x_A \in [a_z; 1]$	

Lp.	Układ [źródło literaturowe]	Ciśn. [kPa]	a _z	α	п
1.	aceton - chloroform [KDB, 2013]	101,30	0,40	1,99	15
2.	aceton – chloroform [Serwiński, 1965]	101,32	0,43	1,84	16
3.	cykloheksanol – fenol [KDB, 2013]	12,00	0,34	4,49	8
4.	fenol – alkohol benzylowy [KDB, 2013]	10,00	0,08	5,87	7
5.	metanol - dietyloamina [Aucejo i in., 1997]	101,30	0,77	1,97	11
6.	woda – kwas mrówkowy [KDB, 2013]	101,32	0,47	2,30	12
7.	woda – kwas mrówkowy [KDB, 2013]	26,66	0,54	2,28	12
8.	woda – kwas mrówkowy [KDB, 2013]	9,33	0,58	2,24	12

Podsumowanie

Otrzymane zależności liczby półek *n* od parametru α dla $y_A > x_A$ lub $\alpha' = 1/\alpha$ dla $y_B > x_B$, są zbieżne z wynikami przedstawionymi w pracy [*Sobczak i in., 2010*]. W związku z tym zestawiono je łącznie (149 modeli równowag destylacyjnych) na wykresie (Rys. 6) i opisano zależnością ($R^2 = 0.81$)

$$n = 22,32\alpha_z^{-0,65} \tag{26}$$

w której: dla $y_A > x_A \ \alpha_z = \alpha$ a dla $y_B > x_B \ \alpha_z = \alpha' = \alpha^{-1}$

Rys. 6. Wykres zależności liczby półek teoretycznych od lotności względnej a dla $y_A > x_A$ oraz a' dla $y_A < x_A$

Wyznaczone w pracy modele matematyczne równowag destylacyjnych oraz linii *e* dotyczące azeotropów dodatnich i ujemnych umożliwiły obliczenie metodą komputerową liczby teoretycznych półek kolumny rektyfikacyjnej dla określonych przez autorów parametrów *a*, *a*' i *a*_z.

LITERATURA

- Acosta J. Arce A., Martínez-Ageitos J., Rodil E., Soto A., 2002. Vapor-liquid quilibrium of the ternary system ethyl acetate + hexane + acetone at 101.32 kPa. J. Chem. Eng. Data, 47, 849-854. DOI: 10.1021/je0102917
- Arce A., Rodil E., Soto A., 2000. Experimental determination of the vapor-liquid equilibrium at 101.32 kPa of the ternary system 1-butanol + methanol + TAME. J. Chem. Eng. Data, 45, 1112-1115. DOI: 10.1021/je000027y
- Atik Z., 2007. Experimental isobaric vapor-liquid equilibria of binary mixtures of 2,2,2-trifluoroethanol with benzene or toluene. J. *Chem. Eng. Data*, **52**, 1086-1088. DOI: 10.1021/je700034q
- Aucejo A., Gabaldón C., Loras S., Marzal P., Sanchotello M., 2003. Phase equilibria in the binary and ternary systems composed of diethyl ketone, 2-pentanone, and 3-pentanol at 101.3 kPa. J. Chem. Eng. Data, 48, 1128-1131. DOI: 10.1021/je025651k
- Aucejo A., Loras S., Muñoz R., 1997. Phase equilibria and multiple azeotropy in the associating system methanol + diethylamine. J. Chem. Eng. Data, 42, 1201-1207. DOI: 10.1021/je970115r
- Cai J., Cui X., Zhang Y., Li R., Feng T., 2011. Vapor-liquid equilibrium and liquid-liquid equilibrium of methyl acetate + methanol + 1-ethyl-3-methylimidazolium acetate. J. Chem. Eng. Data, 56, 282-287. DOI: 10.1021/je100932m
- Ciborowski J., 1976. Inżynieria chemiczna. Inżynieria procesowa. WNT, Warszawa
- Cui W., Zhu J., Liu W., Wu B., Chen K., 2008. Isobaric vapor–liquid equilibria for binary systems of acetone + isopropenyl acetate, 2-butanone + isopropenyl acetate, and isopropenyl acetate + acetylacetone at 101.3 kPa. J. Chem. Eng. Data, 53, 503-507. DOI: 10.1021/je700605t
- de Haan A.B., 1996. Vapor-liquid equilibria and excess enthalpies for binary mixtures of acrylonitrile with hexane, cyclohexane, benzene, toluene, 2-butanone, and acetonitrile. J. Chem. Eng. Data, 41, 1155-1159. DOI: 10.1021/je960139i

- Dejoz A., González-Alfaro V., Llopis F.J., Miguel P.J., Vázquez M.I., 1999. Vapor-liquid equilibrium of binary mixtures of tetrachloroethylene with 1-pentanol, 3-methyl-1butanol, and 2-methyl-1-butanol. J. Chem. Eng. Data, 44, 286-290. DOI: 10.1021/ je980170f
- Gill B.K., Rattan V.K., Kapoor S., 2008. experimental isobaric vapor-liquid equilibrium data for binary mixtures of cyclic ethers with (1-methylethyl)benzene. J. Chem. Eng. Data, 53, 2041-2043. DOI: 10.1021/je800087p
- Gill B.K., Rattan V.K., Kapoor S., 2009. Vapor-liquid equilibrium data for n-methylacetamide and n,n-dimethylacetamide with cumene at 97.3 kPa. J. *Chem. Eng. Data*, 54, 1175-1178. DOI: 10.1021/je800481n
- Gomez-Marigliano A.C., Arce A., Rodil E., Soto A., 2010. Isobaric vapor-liquid equilibria at 101.32 kPa and densities, speeds of sound, and refractive indices at 298.15 K for MTBE or DIPE or TAME + 1-propanol binary systems. J. Chem. Eng. Data, 55, 92-97. DOI: 10.1021/je900274n
- Graczová E., Steltenpohl, P., 2008. Vapor-liquid equilibria of binary systems comprising 1-chloro-2-ethylhexane and 2-ethyl-1-hexanol. J. Chem. Eng. Data, 53, 2475-2478. DOI: 10.1021/je8001249
- Kapoor S., Gill B.K., Rattan V.K., 2008. Isobaric vapor-liquid equilibrium of binary mixture of methyl acetate with isopropylbenzene at 97.3 kPa. *Proceedings of World Academy of Science, Engineering and Technology*, 47, 37-40
- KDB Korean Thermophysical Properties Data Bank. Binary Vapor-Liquid Equilibrium Data (01.2013): http://www.cheric.org/research/kdb/
- Loras S., Aucejo A., Montón J.B., Wisniak J., Segura H., 2002. Phase equilibria for 1,1,1,2,3,4,4,5,5,5-decafluoropentane + 2-methylfuran, 2-methylfuran + oxolane, and 1,1,1,2,3,4,4,5,5,5-decafluoropentane + 2-methylfuran + oxolane at 35 kPa. *J. Chem. Eng. Data*, **47**, 1256-1262 DOI: 10.1021/je0255325
- Martínez-Soria V., Peña M.P., Montón J.B., 1999. Vapor-liquid equilibria for the binary systems isobutyl alcohol + toluene, + isooctane, and + methylcyclohexane at 101.3 kPa. J. Chem. Eng. Data, 44, 608-612. DOI: 10.1021/je980237z
- Mejía A., Segura H., Cartes M., 2010. Vapor-liquid equilibria and interfacial tensions of the system ethanol + 2-methoxy-2-methylpropane. J. Chem. Eng. Data, 55, 428-434. DOI: 10.1021/je9004068
- Monick J.A., Allen H.D., Marlies C.J., 1946. Vapor-liquid equilibrium data for fatty acids and fatty methyl esters at low pressures. J. Am. Oil Chem. Soc., 23, 177-182. DOI: 10.1007/BF02545630
- Orchillés A.V., Miguel P.J., Vercher E., Martínez-Andreu A., 2007. Ionic liquids as entrainers in extractive distillation: isobaric vapor-liquid equilibria for acetone + methanol + 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. J. Chem. Eng. Data, 52, 141-147. DOI: 10.1021/je0603170
- Pereiro A.B., Rodríguez A., Canosa J., Tojo J., 2005. Measurement of the isobaric vaporliquid equilibria of dimethyl carbonate with acetone, 2-butanone, and 2-pentanone at 101.3 kPa and density and speed of sound at 298.15 K. J. Chem. Eng. Data, 50, 481-486. DOI: 10.1021/je0497000
- Rattan V.K., Gill B.K., Kapoor S., 2008. Isobaric vapor-liquid equilibrium data for binary mixture of 2-methyltetrahydrofuran and cumene. *Proceedings of World Academy of Science, Engineering and Technology*, 42, 41-44

Serwiński M., 1982. Zasady inżynierii chemicznej i procesowej. WNT, Warszawa.

- Sobczak E., Ringel T., 2013. Opracowanie matematycznych modeli układów azeotropowych dodatnich i ujemnych oraz wykorzystanie ich do projektowania procesów destylacji. *Inż. Ap. Chem.*, 23, nr 1, 11-13
- Sobczak E., Ringel T., Kasprzak J., 2010. Matematyczny model równowagi destylacyjnej i jego zastosowanie do projektowania procesów destylacji i rektyfikacji. *Inż. Ap. Chem.*, 49, nr 1, 99-100
- Thiede S. Horstmann S., Gmehling J., 2010. Vapor-liquid equilibrium data, excess enthalpy data, and azeotropic data for the binary system dibutyl ether + o-xylene. *J. Chem. Eng. Data*, **55**, 3155-3159. DOI: 10.1021/je100019r
- Vercher E., Rojo F.J., Martínez-Andreu A., 1999. Isobaric vapor-liquid equilibria for 1-propanol + water + calcium nitrate. J. Chem. Eng. Data, 44, 1216-1221. DOI: 10.1021/je990069q
- Vijayaraghavan S.V., Deshpande P.K., Kuloor N.R., 1967. Vapor-liquid equilibrium data for the systems diisopropyl ether-n-heptane and diisopropyl ether-carbon tetrachloride at medium pressures. J. Chem. Eng. Data, 12 (1), 15-17. DOI: 10.1021/je60032a005
- Zhang X., Zuo J., Jian Ch., 2010. Experimental isobaric vapor-liquid equilibrium for binary systems of ethyl methyl carbonate + methanol, + ethanol, + dimethyl carbonate, or + diethyl carbonate at 101.3 kPa. J. *Chem. Eng. Data*, 55, 4896-4902. DOI: 10.1021/je100494z