PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temporal evolution of an optically dense fluid adjacent to an oscillated vertical plate with slip condition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper explores the time-evolving behaviour of an optically dense fluid in proximity to a vertically oscillating plate with a slip condition. By utilizing the Laplace transform (LT) method, the non-dimensional governing equations are resolved. The study delves into the influence of various parameters on the velocity and temperature distributions and the shear stress and heat transfer rate, presenting these effects through detailed graphical visualizations and thorough analysis. The dynamics of the fluid flow are extensively discussed, particularly contrasting the behaviours in scenarios involving an oscillated plate (OP) and a stationary plate (SP). It is observed that the fluid velocity is consistently higher in the presence of an oscillated plate. The shear stress on the plate upsurges with more intense cooling or heating, while an upswing in the slip parameter tends to reduce the shear stress. Furthermore, the heat transfer rate across the plate is raised with an amplified radiation parameter. The insights from this study have significant implications for various engineering fields, including aerospace and environmental engineering, with practical applications in the design and optimization of heat exchangers, cooling systems, chemical reactors, and in understanding ocean currents near dynamically changing coastal structures.
Rocznik
Strony
art. no. e122, 2024
Opis fizyczny
Bibliogr. 41 poz., wykr.
Twórcy
autor
  • Department of Mathematics, University of Gour Banga, Malda 732 103, India
  • Department of Mathematics, University of Gour Banga, Malda 732 103, India
  • Department of Mathematics, Triveni Devi Bhalotia College, Paschim Bardhaman 713 347, India
autor
  • Department of Mathematics, Bajkul Milani Mahavidyalaya, Purba Medinipur 721 655, India
  • Department of Applied Mathematics, Vidyasagar University, Midnapore 721 102, India
Bibliografia
  • 1. Ostrach S. An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force. NACA Rep. 1953;1111:63-79.
  • 2. Siegel R. Transient free convection from a vertical flat plate. Trans Am Soc Mech Eng. 1958;80:347-59. https://doi.org/10.1016/0020-7225(84)90006-5.
  • 3. Soundalgekar VM. Free convection effects on the stokes problem for an infinite vertical plate. Trans ASME J Heat Mass Transf. 1977;99:499-501. https://doi.org/10.1115/1.3450729.
  • 4. Soundalgekar VM. Free convection effects on the flow past an infinite vertical oscillating plate. Astrophys Space Sci. 1979;64:165-71. https://doi.org/10.1007/BF00640038.
  • 5. Mahanthesh B, Gireesha BJ, Gorla RSR. Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate. Alex Eng J. 2016;55:569-81. https://doi.org/10.1016/j.aej.2016.01.022.
  • 6. Soundalgekar VM, Lahurikar RM, Pohanerkar SG, Birajdar NS. Effects of mass transfer on the flow past an oscillating infinite vertical plate with constant heat flux. Thermophys AeroMech. 1994;1:119-24.
  • 7. Muthucumaraswamy R, Meenakshisundaram S. Theoretical study of chemical reaction effects on vertical oscillating plate with variable temperature. Theor Appl Mech. 2006;33:245-57. https://doi.org/10.2298/TAM0603245M.
  • 8. Das S, Jana RN. Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate. Alex Eng J. 2015;54:55-64. https://doi.org/10.1016/j.aej.2015.01.001.
  • 9. Ninh DG, Tien ND, Hoang VNV. Analyses of nonlinear dynamics of imperfect nanocomposite circular cylindrical shells with swirling annular and internal fluid flow using higher order shear deformation shell theory. Eng Struct. 2019;198:109502. https://doi.org/10.1016/j.engstruct.2019.109502.
  • 10. Deka RK, Neog BC. Unsteady MHD flow past a vertical oscillating plate with thermal radiation and variable mass diffusion. Cham J Math. 2009;1:79-92.
  • 11. Deka RK, Neog BC. Combined effects of thermal radiation and chemical reaction on free convection flow past a vertical infinite plate in porous medium. Adv Appl Fluid Mech. 2009;6-2:181-95.
  • 12. Kataria HR, Mittal AS. Mathematical model for velocity and temperature of gravity-driven convective optically thick nanofluid flow past an oscillating vertical plate in presence of magnetic field and radiation. J Niger Math Soc. 2015;34:303-17. https://doi.org/10.1016/j.jnnms.2015.08.005.
  • 13. Das S, Jana RN, Makinde OD. Natural convection near a moving vertical plate with ramped heat and mass fluxes in the presence of thermal radiation. Defect Diffus Forum. 2017;377:211-32. https://doi.org/10.4028/www.scientific.net/DDF.377.211.
  • 14. Anwar T, Kumam P, Watthayu W. An exact analysis of unsteady MHD free convection flow of some nanofluids with ramped wall velocity and ramped wall temperature accounting heat radiation and injection/consumption. Sci Rep. 2020;10:17830. https://doi.org/10.1038/s41598-020-74739-w.
  • 15. Das S, Banu AS, Jana RN. Delineating impacts of non-uniform wall temperature and concentration on time-dependent radiation-convection of Casson fluid under magnetic field and chemical reaction. World J Eng. 2021;18:780-95. https://doi.org/10.1108/WJE-11-2020-0607.
  • 16. VeeraKrishna M. Radiation-absorption, chemical reaction, hall and ion slip impacts on magnetohydrodynamic free convective flow over semi-infinite moving absorbent surface. Chin J Chem Eng. 2021;34:40-52. https://doi.org/10.1016/j.cjche.2020.12.026.
  • 17. Sarma S, Ahmed N. Dufour effect on unsteady MHD flow past a vertical plate embedded in porous medium with ramped temperature. Sci Rep. 2022;12:13343. https://doi.org/10.1038/s41598-022-15603-x.
  • 18. Goswami P, Chakraborty S. Energy transfer through streaming effects in time-periodic pressure- driven nanochannel flows with interfacial slip. Langmuir. 2010;26:581-90. https://doi.org/10.1021/la901209a.
  • 19. Ahmad S, Hussain S, Siddiqui AA, Ali A, Aqee M. Application of Fourier transform to MHD flow over an accelerated plate with partial-slippage. AIP Adv. 2014;4:067104. https://doi.org/10.1063/1.4881677.
  • 20. Das S, Jana RN, Makinde OD. Magnetohydrodynamic mixed convective slip flow past an inclined plate with viscous dissipation and Joule heating. Alex Eng J. 2015;54:251-61. https://doi.org/10.1016/j.aej.2015.03.003.
  • 21. Haq SU, Khan I, Ali F, Khan A, Abdelhameed TNA. Influence of slip condition on unsteady free convection flow of viscous fluid with ramped wall temperature. Abstr Appl Anal. 2015;2015:327975. https://doi.org/10.1155/2015/327975.
  • 22. Ahmad S, Chishtie F, Mahmood A. Analytical technique for magnetohydrodynamic (MHD) fluid flow of a periodically accelerated plate with slippage. Eur J Mech B/Fluids. 2017;65:192-8. https://doi.org/10.1016/j.euromechflu.2017.03.012.
  • 23. Das S, Tarafdar B, Jana RN. Hall effects on unsteady MHD rotating flow past a periodically accelerated porous plate with slippage. Eur J Mech B/Fluids. 2018;72:135-43. https://doi.org/10.1016/j.euromechflu.2018.04.010.
  • 24. Nandi S, Kumbhakar B. Unsteady MHD free convective flow past a permeable vertical plate with periodic movement and slippage in the presence of hall current and rotation. Therm Sci Eng Prog. 2020;19:100561. https://doi.org/10.1016/j.tsep.2020.100561.
  • 25. Das S, Jana RN, Makinde OD. MHD free convective boundary layer slip flow of nanofluid past a convectively heated vertical plate. J Nanofluids. 2015;4:1-13. https://doi.org/10.1166/jon.2015.1170.
  • 26. Das S, Sensharma A, Jana RN, Sharma RP. Slip flow of nanofluid past a vertical plate with ramped wall temperature considering thermal radiation. J Nanofluids. 2017;6:1054-64. https://doi.org/10.1166/jon.2017.1392.
  • 27. Bich DH, Ninh DG. Research on dynamical buckling of imperfect stiffened three-layered toroidal shell segments containing fluid under mechanical loads. Acta Mech. 2017;228:711-30. https://doi.org/10.1007/s00707-016-1724-0.
  • 28. Khalid A, Khan I, Khan S, Shafie S. Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng Sci Tech Int J. 2015;18:309-17. https://doi.org/10.1016/j.jestch.2014.12.006.
  • 29. Raju MC, Varma SVK, Chamkha AJ. Unsteady free convection flow past a periodically accelerated vertical plate with Newtonian heating. Int J Numer Methods Heat Fluid Flow. 2016;26:2119-38. https://doi.org/10.1108/HFF-05-2014-0123.
  • 30. Kataria HR, Patel HR. Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium. Alex Eng J. 2016;55:583-95. https://doi.org/10.1016/j.aej.2016.01.019.
  • 31. Kataria HR, Patel HR. Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium. Alex Eng J. 2016;55:2125-37. https://doi.org/10.1016/j.aej.2016.06.024.
  • 32. Bich DH, Ninh DG. An analytical approach: nonlinear vibration of imperfect stiffened FGM sandwich toroidal shell segments containing fluid under external thermo-mechanical loads. Compos Struct. 2017;162:164-81. https://doi.org/10.1016/j.compstruct.2016.11.065.
  • 33. Arifuzzaman SM, Khan MS, Mehedi MFU, Rana BMJ, Ahmmed SF. Chemically reactive and naturally convective high speed MHD fluid flow through an oscillatory vertical porous plate with heat and radiation absorption effect. Eng Sci Technol Int J. 2018;21:215-28. https://doi.org/10.1016/j.jestch.2018.03.004.
  • 34. Das S, Ali A, Jana RN. Darcian slip flow of rotating magneto-reactive PEG conveying MoS Casson nanofluid with ramped temperature and concentration. Spec Top Rev Porous Media. 2020;11:71-102. https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2020030547.
  • 35. Das S, Mahato N, Ali A, Jana RN. Dynamics pattern of a radioactive rGO-magnetite-water flowed by a vibrated Riga plate sensor with ramped temperature and concentration. Chem Eng J Adv. 2023;15:100517. https://doi.org/10.1016/j.ceja.2023.100517.
  • 36. Ninh DG, Tien ND. Investigation for electro-thermo-mechanical vibration of nanocomposite cylindrical shells with an internal fluid flow. Aerosp Sci Technol. 2019;92:501-19. https://doi.org/10.1016/j.ast.2019.06.023.
  • 37. Sarkar S, Jana RN, Das S. Time-dependent entropy analysis in magnetized Cu-Al2O3/ethylene glycol hybrid nanofluid flow due to a vibrating vertical plate. Int J Fluid Mech Res. 2020;47:419-43. https://doi.org/10.1615/InterJFluidMechRes.2020033884.
  • 38. VeeraKrishna M. Chemical reaction, heat absorption and newtonian heating on MHD free convective Casson hybrid nanofluids past an infinite oscillating vertical porous plate. Int Commun Heat Mass Transf. 2022;138:106327. https://doi.org/10.1016/j.icheatmasstransfer.2022.106327.
  • 39. Ali A, Das S, Jana RN. MHD gyrating stream of non-Newtonian modified hybrid nanofluid past a vertical plate with ramped motion, Newtonian heating and Hall currents. J Appl Math Mech. 2023;103:e202200080. https://doi.org/10.1002/zamm.202200080.
  • 40. Goldstein S. Modern developments in fluid dynamics. New York: Dover; 1965.
  • 41. Rosseland S. Theoretical astrophysics. New York: Oxford University; 1936.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bee411d-deef-452d-a959-d93ae987027a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.