PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining the Correction Factors of Overhead-Conductors in 6kV Mining System of QuangNinh, VietNam with the Consideration of Power Harmonic Impact

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznaczanie współczynników korekcyjnych dla przewodów napowietrznych 6kV w kompleksie górniczym QuangNinh w Wietnamie z uwzględnieniem wpływu harmonicznych mocy
Konferencja
POL-VIET 2023 — the 7th International Conference POL-VIET
Języki publikacji
EN
Abstrakty
EN
Understanding the impact of power harmonic on energy transmission play an important role not only in the operation process but also in the designing procedure of MV grid. In 6kV mining grids of Vietnamese coal mines, because of rapidly utilizing the power electronic machines, the power quality violation occurs very frequently. This lead to many disadvantages such as: the increase of power losses, voltage distortion, over-heating in transformers and conductors. Moreover, the presence of power harmonic bring the bad impact of skin effect and proximity on conductor including overhead-conductors and cables. The actual operation exhibits that the losses of transmission lines are approximately over 50% of total network losses. If there are power quality violation, this amount could be higher. Basing on investigating the fact of power harmonic violations in 6kV grid of both underground and surface mines, the paper will analyze this kind of impact. An algorithm relying on Matlab programming is used to calculate the energy losses. Results are compared with on-site measurement datas and lab-measurement to obtain series of correction factors corresponding to individual line’s cross section. The outcomes of research could be applicable for power utilities to have better analysis in the designing stage of mining MV grids.
Rocznik
Strony
71--78
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., zdj.
Twórcy
  • HaNoi University of Mining and Geology, HaNoi, VietNam
  • Faculty of Electrical Engineering, Electric Power University, HaNoi, VietNam
Bibliografia
  • 1. VINAMCOMIN Technical reporting of Mechanization and Modernization in Vietnamese coal company, VINACOMIN, 2020
  • 2. A. Nayak, et al. "Impact of Harmonics on Power Losses in Overhead Conductors and Transformers." Proceedings of the 2014 IEEE Power and Energy Society General Meeting, 2014.
  • 3. R. K. Gupta, et al. "Impact of Power Harmonics on Power Losses in Overhead Conductors." International Journal of Scientific and Research Publications, Vol. 5, Issue 3, March 2015.
  • 4. A. H. Nayfeh, et al. "Impact of Harmonics on Power Losses in Overhead Conductors and Cables." Proceedings of the 2008 IEEE Power and Energy Society General Meeting, 2008.
  • 5. Sarmah, D., and Talukdar, P. "Impact of Harmonics on Power Losses in Overhead Conductors Considering the Load Characteristics." International Journal of Engineering Research & Technology, Vol. 2, Issue 12, December 2013
  • 6. Amiri, M., & Keyhani, A. (2016). Optimal energy transmission distance and efficiency for renewable energy microgrids. Renewable Energy, 85, 78-86. URL: https://doi.org/10.1016/j.renene.2015.06.005
  • 7. Zeng, H., Hu, W., & Xia, Q. (2018). Optimal power flow considering distance-dependent line transmission loss for smart grid. International Journal of Electrical Power & Energy Systems, 98, 432-439. URL: https://doi.org/10.1016/j.ijepes.2018.01.012
  • 8. He, J., Liu, M., & Wang, C. (2019). An optimal transmission power allocation method considering transmission loss and environmental impact for multi-node power systems. IEEE Transactions on Power Systems, 34(4), 2754-2765. URL: https://doi.org/10.1109/TPWRS.2019.2891102
  • 9. Chen, J., Yang, J., Wang, J., & Wu, J. (2020). Research on energy-efficient power transmission distance optimization for offshore wind power. International Journal of Electrical Power & Energy Systems, 118, 105850. URL: https://doi.org/10.1016/j.ijepes.2020.105850
  • 10. Hinz, S., Siefert, M., & Skritek, P. (2019). Optimal power transmission distance for direct current connected offshore wind farms based on economic and technical factors. Energies, 12(18), 3436. URL: https://doi.org/10.3390/en12183436
  • 11. Georgilakis, P. S. (2013). High Voltage and Electrical Insulation Engineering. CRC Press.Luo, F., & Kang, K. (2017). Skin Effect and Power Loss Analysis for High-Frequency Induction Heating. IEEE Transactions on Power Electronics, 32(8), 6287-6296
  • 12. Liu, Y., & Cheng, M. (2018). Research on the Influence of Skin Effect on Overhead Power Line Parameters. In 2018 International Conference on Smart Grid and Electrical Automation (ICSGEA) (pp. 155-158). IEEE.
  • 13. Marotta, A., & Leccese, F. (2019). Influence of Skin Effect on the Efficiency of Electric Vehicle Inductive Charging Systems. Energies, 12(21), 4069
  • 14. Cheng, M., & Liu, Y. (2020). Influence of skin effect on transmission line in high-frequency band. IOP Conference Series: Earth and Environmental Science, 483(4), 042003
  • 15. Díaz, F., Espejo, M., & Rull-Duran, J. (2020). Skin and Proximity Effects on Power Losses of HV Overhead Lines. Energies, 13(22), 5998
  • 16. Jin, T., Niu, C., & Lu, J. (2021). Analysis of the Influence of Skin Effect on DC Bias Characteristics of a High-Voltage Generator. IEEE Transactions on Plasma Science, 49(6), 2950-2957
  • 17. Li, L., & Zhang, X. (2021). Research on the Influence of Skin Effect on AC Resistance of High-Voltage Cables for HVDC. In 2021 5th International Conference on High Voltage Engineering and Power Systems (ICHVEPS) (pp. 1-5). IEEE
  • 18. Khoa, D.Q. (2010). Research to plan the MV grid of Quang Ninh Province suited to the development of economic and social characteristics to the year 2020 (Unpublished doctoral dissertation, University of Mining and Geology, Hanoi, Vietnam).
  • 19. Khue, N.M. (2018). Research and suggest solutions to reduce the power losses of MV grid in Quang Yen town, Quang Ninh district (Unpublished master’s thesis, University of Mining and Geology, Hanoi, Vietnam).
  • 20. Lobao, J.A., Devezas, T. & Catalao, J.P.S. (2013). Influence of cable losses on economic analysis of efficient and sustainable electrical equipment.
  • 21. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.723.312&rep=rep1&type=pdf
  • 22. Neusel-Lange, N., Christian Oerter, Markus Zdrallek, Peter Birkner, Martin Stiegler, Roman Uhlig. (2014). Economic evaluation of distribution grid automation systems – Case study in a rural German LV-grid. International Conference on Electricity Distribution, CIRED 2014, Rome.
  • 23. Thanh, L.X. (2018). Determining the elastic factor for ecotechnic assessment of Medium Voltage (MV) transmission lines with a consideration of the conductor’s skin effect. Proceeding of Science and Mathematics International conference, Jakarta Indonesia (SMIC 2018).
  • 24. Ulbig, A., Koch, S. & Antonakopoulos, C. (2017). Towards more cost-effective PV connection request assessments via time series-based grid simulation and analysis. In Proceedings of International Conference on Electricity Distribution, CIRED 2017, Glasgow. Retrieved from http://cired.net/publications/cired2017/pdfs/CIRED2017_1367_final.pdf
  • 25. Vitiello, S., Flego, G., Setti, A. & Fulli, G. (2015). Costs and benefits of smart grid pilot installations and scalability options, JRC science, and policy report study in rural Germany grid.
  • 26. Online at: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiH_oK4orHhAhWKMN4KHSQGDREQFjAAegQIARAC&url=https%3A%2F%2Fwww.smartgrid. gov%2Ffiles%2FEstimating_Costs_Benefits_Smart_Grid_Preliminary_Estimate_In_201103.pdf&usg=AOvVaw2fw5qrs3fETRGNLonfWptQ
  • 27. Kupke, S. Pilot project—High temperature low sag conductors. In Proceedings of the CIGRE WG B2.42, Stockholm, Sweden, 21 May 2010
  • 28. A Method of Stress-Strain Testing of Aluminum Conductor and a Test for Determining the Long Time Tensile Creep of Aluminum Conductors in Overhead Lines; Electrical Technical Committee of the Aluminum Association: Arlington, TX, USA, 1999
  • 29. IEC 62420: Concentric Lay Stranded Overhead Electrical Conductors Containing One or More Gap(s); IEC: Geneva, Switzerland, 2008
  • 30. Jarkko Tolvanen, Mikko Nelo, Heidi Alasmaki, Tuomo Siponkoski, Piia Makela, Timo Vahera, Jari Hannu, Jari Juuti, Heli Jantunen, Unltraelastic and High-conductivity multiphase conductor with universally autonomous self healing, Advanced Science, Vol 9 Issue 36
  • 31. https://doi.org/10.1002/advs.202205485
  • 32. Bun. HV, Thanh. LX Impact of power harmonics on precise and discriminative tripping of the relays system for earthing protection in underground 6kV grids of QuangNinh underground mines, Proceeding of Science and Mathematics International conference, Jakarta Indonesia (SMIC 2018)
  • 33. Thanh, L.X., & Bun, H.V. (2022). Identifying the factors influencing the voltage quality of 6kV grids when using electric excavators in surface mining. Mining of Mineral Deposits, 16(2), 73-80. https://doi.org/10.33271/mining16.02.073
  • 34. Ramakrishna, C., and Chidambaram, S. "Impact of Harmonics on Power Losses in Overhead Conductors." Proceedings of the 2016 IEEE Region 10 Conference (TENCON), 2016
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3be9a967-b81e-413e-8a57-3cb186101110
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.