PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-velocity impact behaviour of open-cell foams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metal foams are cellular solids that show some unique properties which cannot be found in other natural or human-made materials. While the impact characteristics of closed-cell foams under static and impact loadings appear to be well-studied in the literature, the impact behaviour of open-cell foams is not yet well-understood. In this study, open-cell foams with two different densities are impacted by drop weights with different kinetic energies. The effects of foam density, impactor initial height, and impactor weight on the recorded stresstime, stress-strain, and energy-strain curves are investigated. While the stress-strain curve of closed-cell foams under impact loading usually consists of a single bell, the results of the current study showed that both the stress-time and stress-strain curves of most the samples consist of two consecutive bells. By increasing weight of the impacting weight, the number of bells increases which helps in increasing the impact period and keeping the maximum generated stress low. Compared to closed-cell foams, the open-cell foams can therefore better absorb the energy, as long as the impact energy is relatively small. The relatively low stiffness as well as the presence of large hollow space inside the open-cell foams also makes them favorable for being used as biomedical scaffolds.
Rocznik
Strony
939--949
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, Iran, and Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands
autor
  • Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran, Iran
Bibliografia
  • 1. Ahmadi S., Campoli G., Amin Yavari S., Sajadi B., Wauthl´e R., Schrooten J., Weinans H., Zadpoor A.A., 2014, Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells, Journal of the Mechanical Behavior of Biomedical Materials, 34, 106-115
  • 2. Amin Yavari S., Wauthl´e R., van der Stok J., Riemslag A., Janssen M., Mulier M., Kruth J.-P., Schrooten J., Weinans H., Zadpoor A.A., 2013, Fatigue behavior of porous biomaterials manufactured using selective laser melting, Materials Science and Engineering: C, 33, 8, 4849-4858
  • 3. Babaee S., Jahromi B.H., Ajdari A., Nayeb-Hashemi H., Vaziri A., 2012, Mechanical properties of open-cell rhombic dodecahedron cellular structures, Acta Materialia, 60, 6, 2873- -2885
  • 4. Borleffs M., 2012, Finite Element Modeling to Predict Bulk Mechanical Properties of 3D Printed Metal Foams, Delft University of Technology
  • 5. Campoli G., Borleffs M., Amin Yavari S., Wauthle R., Weinans H., Zadpoor A.A., 2013, Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing, Materials and Design, 49, 957-965
  • 6. Castro G., Nutt S., Wenchen X., 2013, Compression and low-velocity impact behavior of aluminum syntactic foam, Materials Science and Engineering: A, 578, 222-229
  • 7. Doig S., Boam A., Livingston A., Stuckey D., 1999, Mass transfer of hydrophobic solutes in solvent swollen silicone rubber membranes, Journal of Membrane Science, 154, 1, 127-140
  • 8. Fang Q., Zhang J., Zhang Y., Liu J., Gong Z., 2015, Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact, Composite Structures, 124, 409-420
  • 9. Gibson L.J., Ashby M.F., 1997, Cellular Solids: Structure and Properties, Cambridge University Press
  • 10. Hedayati R., Ahmadi S., Lietaert K., Pouran B., Li Y., Weinans H., Rans C., Zadpoor A., 2018, Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials, Journal of the Mechanical Behavior of Biomedical Materials, 79
  • 11. Hedayati R., Leeflang A., Zadpoor A., 2017, Additively manufactured metallic pentamode meta-materials, Applied Physics Letters, 110, 9, 091905
  • 12. Hedayati R., Sadighi M., Mohammadi-Aghdam M., Zadpoor A.A., 2016a, Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell, Journal of the Mechanical Behavior of Biomedical Materials, 53, 272-294
  • 13. Hedayati R., Sadighi M., Mohammadi-Aghdam M., Zadpoor A.A., 2016b, Mechanical properties of additively manufactured octagonal honeycombs, Materials Science and Engineering: C, 69, 1307-1317
  • 14. Hedayati R., Sadighi M., Mohammadi-Aghdam M., Zadpoor A.A., 2016c, Mechanical properties of additively manufactured thick honeycombs, Materials, 9, 8, 613
  • 15. Hedayati R., Ziaei-Rad S., 2011, Foam-core effect on the integrity of tailplane leading edge during bird-strike event, Journal of Aircraft, 48, 6, 2080-2089
  • 16. Jiang B., Wang Z., Zhao N., 2007, Effect of pore size and relative density on the mechanical properties of open cell aluminum foams, Scripta Materialia, 56, 2, 169-172
  • 17. Kanahashi H., Mukai T., Yamada Y., Shimojima K., Mabuchi M., Nieh T., Higashi K., 2000, Dynamic compression of an ultra-low density aluminum foam, Materials Science and Engineering: A, 280, 2, 349-353
  • 18. Kashef S., Lin J., Hodgson P.D., Yan W., 2008, Mechanical properties of titanium foam for biomedical applications, International Journal of Modern Physics B, 22, 31-32, 6155-6160
  • 19. Kashef S., Asgari A., Hilditch T.B., Yan W., Goel V.K., Hodgson P.D., 2010, Fracture toughness of titanium foams for medical applications, Materials Science and Engineering: A, 527, 29, 7689-7693
  • 20. Kashef S., Asgari A., Hilditch T.B., Yan W., Goel V.K., Hodgson P.D., 2011, Fatigue crack growth behavior of titanium foams for medical applications, Materials Science and Engineering: A, 528, 3, 1602-1607
  • 21. Li B., Zhao G., Lu T., 2012, Low strain rate compressive behavior of high porosity closed-cell aluminum foams, Science China Technological Sciences, 55, 2, 451-463
  • 22. Mukai T., Miyoshi T., Nakano S., Somekawa H., Higashi K., 2006, Compressive response of a closed-cell aluminum foam at high strain rate, Scripta Materialia, 54, 4, 533-537
  • 23. Nieh T., Higashi K., Wadsworth J., 2000, Effect of cell morphology on the compressive properties of open-cell aluminum foams, Materials Science and Engineering: A, 283, 1, 105-110
  • 24. Peroni M., Solomos G., Pizzinato V., 2013, Impact behaviour testing of aluminium foam, International Journal of Impact Engineering, 53, 74-83
  • 25. Rajendran R., Moorthi A., Basu S., 2009, Numerical simulation of drop weight impact behaviour of closed cell aluminium foam, Materials and Design, 30, 8, 2823-2830
  • 26. Ramachandra S., Kumar P.S., Ramamurty U., 2003, Impact energy absorption in an Al foam at low velocities, Scripta Materialia, 49, 8, 741-745
  • 27. Schuler P., Fischer S.F., Buhrig-Polaczek A., Fleck C., 2013, Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading, Materials Science and Engineering: A, 587, 250-261
  • 28. Shulmeister V., van der Burg M., van der Giessen E., Marissen R., 1998, A numerical study of large deformations of low-density elastomeric open-cell foams, Mechanics of Materials, 30, 2, 125-140
  • 29. Wang P., Xu S., Li Z., Yang J., Zhang C., Zheng H., Hu S., 2015, Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading, Materials Science and Engineering: A, 620, 253-261
  • 30. Wang Z., Ma H., Zhao L., Yang G., 2006, Studies on the dynamic compressive properties of open-cell aluminum alloy foams, Scripta Materialia, 54, 1, 83-87
  • 31. Warren W., Kraynik A., 1997, Linear elastic behavior of a low-density Kelvin foam with open cells, Journal of Applied Mechanics, 64, 4, 787-794
  • 32. Weaire D., Phelan R., 1994, A counter-example to Kelvin’s conjecture on minimal surfaces, Philosophical Magazine Letters, 69, 2, 107-110
  • 33. Yamada Y., Shimojima K., Sakaguchi Y., Mabuchi M., Nakamura M., Asahina T., Mukai T., Kanahashi H., Higashi K., 2000, Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure, Materials Science and Engineering: A, 280, 1, 225-228
  • 34. Yi F., Zhu Z., Zu F., Hu S., Yi P., 2001, Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams, Materials Characterization, 47, 5, 417-422
  • 35. Zhang Y., Sun G., Xu X., Li G., Huang X., Shen J., Li Q., 2013, Identification of material parameters for aluminum foam at high strain rate, Computational Materials Science, 74, 65-74
  • 36. Zheng X., Lee H., Weisgraber T.H., Shusteff M., DeOtte J., Duoss E.B., Kuntz J.D., Biener M.M., Ge Q., Jackson J.A., 2014, Ultralight, ultrastiff mechanical metamaterials, Science, 344, 6190, 1373-1377
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3be69730-d166-4978-a002-fdf5b75cc9c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.