PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Solvothermal preparation of an Al/CuO nanothermite – study of practical considerations

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Solwotermalna preparatyka nanotermitu Al/CuO – badanie uwarunkowań praktycznych
Języki publikacji
EN
Abstrakty
EN
Nanothermites are promising energetic materials (EMs) which can replace current primary EMs, due to their high linear combustion velocities, short ignition times and high energy density. In this work, Al/CuO compositions were prepared and tested in terms of sensitivity to friction, impact and electromagnetic radiation, as well as in terms of its selected properties, such as specific impulse, combustion velocity and bulk density. The results of these investigations show the necessity of refining the method of preparing nanothermites, thereby provide a foundation for further research.
PL
Nanotermity to obiecująca grupa materiałów wysokoenergetycznych (MW), która może zastąpić MW inicjujące, gdyż cechuje się wysoką liniową prędkością spalania, krótkimi czasami zapłonu i wysoką gęstością energii. W niniejszej pracy przygotowano i zbadano parametry bezpieczeństwa kompozycji Al/CuO, tzn. wrażliwość na tarcie, uderzenie i promieniowanie laserowe, a także jej wybrane właściwości, tzn. impuls właściwy, prędkość spalania i gęstość. Wyniki przeprowadzonych badań wskazują na konieczność dopracowania metody wytwarzania nanotermitu, lecz dostarczają niezbędnych podstaw do dalszych prac badawczych
Rocznik
Tom
Strony
43--54
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • student Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network ‒ Institute of Industrial Organic Chemistry, Department of Explosive Techniques, 1 Zawadzkiego St., 42-693 Krupski Młyn, Poland
  • Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
  • Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
  • Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, ks. M. Strzody 9, 44-100 Gliwice, Poland
Bibliografia
  • [1] Wu T., Lahiner G., Tenailleau C., Reig B., Hungria T., Esteve A., Rossi C. Unexpected Enhanced Reactivity of Aluminized Nanothermites by Accelerated Aging. Chem. Eng. J. 2021, 418 paper 129432; https://doi.org/10.1016/j.cej.2021.129432.
  • [2] Polis M., Stolarczyk A., Glosz K., Jarosz T. Quo Vadis, Nanothermite? A Review of Recent Progress. Materials 2022, 15(9) paper 3215; https://doi.org/10.3390/ma150932151-38.
  • [3] Dombroski D.M.B., Wang A., Wen J.Z., Alfano M. Joining and Welding with a Nanothermite and Exothermic Bonding Using Reactive Multi-Nanolayers. A Review. J. Manuf. Process. 2022, 75: 280-300; https://doi.org/10.1016/j.jmapro.2021.12.056.
  • [4] Chamberland D., Defence R. Fullerene Derivatives and Aluminum-Based Nanothermites as Potential New Ammunition Primers. Defence Research and Development Canada, 2014; https://apps.dtic.mil/sti/citations/AD1016921 [retrieved 30.10.2024].
  • [5] Comet M., Martin C., Schnell F., Spitzer D. Nanothermites: A Short Review. Factsheet for Experimenters, Present and Future Challenges. Propellants Explos. Pyrotech. 2019, 44(1): 18-36;https://doi.org/10.1002/prep.201800095.
  • [6] Johnson C.E., Higa K.T., Tran T.T., Albro W.R. Thermite Initiation Processes and Thresholds. MRS Online Proc. Libr. 2012, 1405: 44-49; https://doi.org/10.1557/opl.2012.21.
  • [7] Comet M., Vidick G., Schnell F., Suma Y., Baps B., Spitzer D. Sulfates-Based Nanothermites: An Expanding Horizon for Metastable Interstitial Composites. Angew. Chemie Int. Ed. 2015, 54: 4458-4462; https://doi.org/10.1002/anie.201410634.
  • [8] Piercey D.G., Klapötke T.M. Nanoscale Aluminum - Metal Oxide (Thermite) Reactions for Application in Energetic Materials. Cent. Eur. J. Energ. Mater. 2010, 7(2): 115-129.
  • [9] He W., Liu P.J., He G.Q., Gozin M., Yan Q.L. Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization. Adv. Mater. 2018, 30(41) paper e1706293; https://doi.org/10.1002/adma.201706293.
  • [10] Bokov D., Turki Jalil A., Chupradit S., Suksatan W., Javed Ansari M., Shewael I.H., Valiev G.H., Kianfar E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021 paper 5102014; https://doi.org/10.1155/2021/5102014.
  • [11] Wang Y., Zhang X., Xu J., Shen Y., Wang C., Li F., Zhang Z., Chen J., Ye Y., Shen R. Fabrication and Characterization of Al-CuO Nanocomposites Prepared by Sol-Gel Method. Def. Technol. 2021, 17(4): 1307-1312; https://doi.org/10.1016/j.dt.2020.06.029.
  • [12] Bock N., Dargaville T.R., Woodruff M.A. Electrospraying of Polymers with Therapeutic Molecules: State of the Art. Prog. Polym. Sci. 2012, 37(11): 1510-1551; https://doi.org/10.1016/j.progpolymsci.2012.03.002.
  • [13] Wang H., DeLisio J.B., Jian G., Zhou W., Zachariah M.R. Electrospray Formation and Combustion Characteristics of Iodine-Containing Al/CuO Nanothermite Microparticles. Combust. Flame 2015, 162: 2823-2829; http://dx.doi.org/10.1016/j.combustflame.2015.04.005.
  • [14] Chen L., Ru C., Zhang H., Zhang Y., Wang H., Hu X., Li G. Progress in Electrohydrodynamic Atomization Preparation of Energetic Materials with Controlled Microstructures. Molecules 2022, 27(7) paper 2374; https://doi.org/10.3390/molecules27072374.
  • [15] Dai J., Wang C., Wang Y., Xu W., Xu J., Shen Y., Zhang W., Ye Y., Shen R. From Nanoparticles to 54S. W ojak, M. Polis, A. Stolarczyk, T. Jarosz, On-chip 3D Nanothermite: Electrospray Deposition of Reactive Al/CuO@NC onto Semiconductor Bridge and Its Application for Rapid Ignition. Nanotechnology 2020, 31(19) paper 195712; https://doi.org/10.1088/1361-6528%2Fab6fd8.
  • [16] Dai J., Wang F., Ru C., Xu J., Wang C., Zhang W., Ye Y., Shen R. Ammonium Perchlorate as an Effective Additive for Enhancing the Combustion and Propulsion Performance of Al/CuO Nanothermites. J. Phys. Chem. C 2018, 122: 10240-10247; http://dx.doi.org/10.1021/acs.jpcc.8b01514.
  • [17] Chen L., Ru C., Zhang H., Zhang Y., Chi Z., Wang H., Li G. Assembling Hybrid Energetic Materials with Controllable Interfacial Microstructures by Electrospray. ACS Omega 2021, 6(26): 16816-16825; https://doi.org/10.1021/acsomega.1c01371.
  • [18] Teo W.E., Ramakrishna S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17(14): R89-R106; https://doi.org/10.1088/0957-4484/17/14/r01.
  • [19] Gebler M., Schoot Uiterkamp A.J.M., Visser C. A Global Sustainability Perspective on 3D Printing Technologies. Energy Policy 2014, 74: 158-167; https://doi.org/10.1016/j.enpol.2014.08.033.
  • [20] Saadi M.A.S.R., Maguire A., Pottackal N.T., Thakur M.S.H., Ikram M.M., Hart A.J., Ajayan P.M., Rahman M.M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34(28) paper e2108855; https://doi.org/10.1002/adma.202108855.
  • [21] Mao Y., Zhong L., Zhou X., Zheng D., Zhang X., Duan T., Nie F., Gao B., Wang D. 3D Printing of Micro-Architected Al/CuO-Based Nanothermite for Enhanced Combustion Performance. Adv. Eng. Mater. 2019, 21(12) paper 1900825; https://doi.org/10.1002/adem.201900825.
  • [22] Shen J., Wang H., Kline D.J., Yang Y., Wang X., Rehwoldt M., Wu T., Holdren S., Zachariah M.R. Combustion of 3D Printed 90wt% Loading Reinforced Nanothermite. Combust. Flame 2020, 215: 86-92; https://doi.org/10.1016/j.combustflame.2020.01.021.
  • [23] Kabra S., Gharde S., Gore P.M., Jain S., Khire V.H., Kandasubramanian B. Recent Trends In Nanothermites: Fabrication, Characteristics and Applications. Nano Express 2020, 1(3) paper 032001; https://doi:10.1088/2632-959X/abbce7.
  • [24] Zhang Y., Sui H., Li Y., Wen J.Z. Energetic Characteristics of the Al/CuO Core-Shell Composite Micro-Particles Fabricated as Spherical Colloids. Thermochim. Acta 2020, 689 paper 178656; https://doi:10.1016/j.tca.2020.178656.
  • [25] Fahd A., Baranovsky A., Dubois C., Chaouki J., Wen J.Z. Superior Performance of Quaternary NC/GO/Al/KClO4 Nanothermite for High Speed Impulse Small-scale Propulsion Applications. Combust. Flame 2021, 232 paper 111527; https://doi.org/10.1016/j.combustflame.2021.111527.
  • [26] Naveena D., Logu T., Dhanabal R., Sethuraman K., Bose A.C. Comparative Study of Effective Photoabsorber CuO Thin Films Prepared via Different Precursors Using Chemical Spray Pyrolysis for Solar Cell Application. J. Mater. Sci. Mater. Electron. 2019, 30 paper 561572; https://doi.org/10.1007/s10854-018-0322-4.
  • [27] Petre C.F., Chamberland D., Ringuette T., Ringuette S., Paradis S., Stowe R. Low-Power Laser Ignition of Aluminum/Metal Oxide Nanothermites. Int. J. Energ. Mater. Chem. Propuls. 2014, 13(6): 479-494; https://doi.org/10.1615/INTJENERGETICMATERIALSCHEMPROP. 2014011402.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3be4a291-5485-498d-9ad4-979141f5719b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.