PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of synthesis parameters on the physical properties and morphology of smart PNIPAAm hydrogels

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bone loss is common in human old age and new materials that promote bone regeneration are an active line of research. In the present work, seven smart hydrogels based on PNIPAAm were synthesized with the prospective to be used in tissue engineering as a scaffold for bone growth. By changing the stoichiometric concentrations of the reagents and the synthesis parameters, hydrogels with different physical properties and morphology were obtained. Swelling, degradation properties, and crystallinity were analyzed. Physical properties were characterized using 1H-NMR, FTIR, and TGA. The results showed that the swelling degree (degree of mass expansion) varied at room temperature from 1,400% for less rigid hydrogels to 550% for stiffer hydrogels. With heating to body temperature, swelling decreases to 300% and 200%, respectively. The samples presented three-dimensional morphology, but they acquired different structures according to the magnetic stirring during the synthesis process. The crosslink and initiator concentrations have an important effect on the polymeric structure and thermal stability of the hydrogels. The PNIPAAm synthesized using 8.9 and 15.7 mol % of MBA are the most promising compounds to be used in the future as a scaffold for biomedical applications due to their high thermal stability, satisfactory 3D surface morphology, and shrinking-swelling property.
Słowa kluczowe
Wydawca
Rocznik
Strony
196--205
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Biomaterials Laboratory: Department of Materials Science, Military Institute of Engineering, Rio de Janeiro, Brazil
  • Biomaterials Laboratory: Department of Materials Science, Military Institute of Engineering, Rio de Janeiro, Brazil
  • Biomaterials Laboratory: Department of Materials Science, Military Institute of Engineering, Rio de Janeiro, Brazil
  • Biomaterials Laboratory: Department of Materials Science, Military Institute of Engineering, Rio de Janeiro, Brazil
  • Biomaterials Laboratory: Department of Materials Science, Military Institute of Engineering, Rio de Janeiro, Brazil
Bibliografia
  • [1] Rico-Llanos GA, Borrego-González S, Moncayo-Donoso M, Becerra J, Visser R. Collagen type I biomaterials as scaffolds for bone tissue engineering. Polymers. 2021;13(4):599. doi:10.3390/polym13040599.
  • [2] Haq MA, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels: a review. Mater Sci Eng C. 2017;70(1):842–855. doi:10.1016/j.msec.2016.09.081.
  • [3] Chitra, V. Diagnosis, screening and treatment of osteoporosis–a review. Biomed Pharmacol J. 2021;14(2):567–575. doi:10.13005/bpj/2159.
  • [4] Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019 [published correction appears in Lancet. 2020 Dec 4]. Lancet. 2021;396(10267):2006–2017. doi:10.1016/S0140-6736(20)32340-0.
  • [5] Amukarimi S, Ramakrishna S, Mozafari M. Smart biomaterials—a proposed definition and overview of the field. Curr Opin Biomed Eng. 2021;19(100311). doi.org/10.1016/j.cobme.2021.100311.
  • [6] Montoyal C, Du Y, Anthony L, Gianforcaro AL, Orrego S, Yang M, et al. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Research 2021;9(1):12. doi.org/10.1038/s41413-020-00131-z.
  • [7] Lorenzo RA, Carro AM, Concheiro A, Alvarez-Lorenzo C. Stimuli-responsive materials in analytical separation. Anal Bioanal Chem. 2015;407:4927–4948. doi:10.1007/s00216-015-8679-1.
  • [8] Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials. 2021;14(4):858. doi:10.3390/ma14040858.
  • [9] Alexander A, Ajazuddin, Khan J, Saraf S, Saraf S. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Euro J Pharm Biopharm. 2014;88(3):575–585. doi:10.1016/j.ejpb.2014.07.005.
  • [10] Sikdar P, Uddin M, Dip TM, Islam S, Hoque MS, Dhar AK, et al. Recent advances in the synthesis of smart hydrogels. Mater Adv. 2021;2:4532–4573. doi:10.1039/D1MA00193K.
  • [11] He W, Ma Y, Gao X, Song J. Application of Poly(N-isopropylacrylamide) as thermosensitive smart materials. J Phys: Conf Ser. 2020;1676(1):012063. doi:10.1088/1742-6596/1676/1/012063.
  • [12] Koetting MC, Peters JT, Steichen SD, Peppas NA. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng: R Rep. 2015;93:1–49. doi:10.1016/j.mser.2015.04.001.
  • [13] Icriverzi M, Rusen L, Sima LH, Moldovan A, Brajnicov S, Bonciu A, et al. In vitro behavior of human mesenchymal stem cells on poly(N-isopropylacrylamide) based biointerfaces obtained by matrix-assisted pulsed laser evaporation. Applied Surface Science. 2018;440:712–724. doi:10.1016/j.apsusc.2018.01.200.
  • [14] Queiroz PM. Síntese e caracterização de hidrogéis superabsorventes obtidos a partir da copolimerização de acrilamida, n-isopropilacrilamida e metacrilato de sódio. Belo Horizonte: Universidade Federal de Minas Gerais; 2010.
  • [15] Matzelle TR, Geuskens G, Kruse N. Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy. Macromolecules. 2003;36(8):2926–2931. doi:10.1021/ma021719p.
  • [16] Aquada FA, Muniz EC, Vaz CMP, Mattoso LHCC. Correlation between parameters of swelling kinetic with network and hydrophilic characteristics of polyacrylamide and methylcellulose hydrogels. Química Nova, 2009;32(6):1482–1490. doi:10.1590/S0100-40422009000600023.
  • [17] Ribeiro CA., Martins MVS, Bressiani AH, Bressiani JC, Leyva ME, de Queiroz AAA. Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering. Mater Sci Eng C. 2017;81:156–166. doi:10.1016/j.msec.2017.07.048.
  • [18] Hong TT, Okabe H, Hidaka Y, Hara K. Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer. Environ Pollut. 2018;242(Pt B):1458–1466. doi:10.1016/j.envpol.2018.07.129.
  • [19] Ruland W. X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallographica. 1961;14:1180–1185. doi:10.1107/S0365110X61003429.
  • [20] Pavia DL, Lampman GM, Kriz G, Vyvyan JA. Introduction to spectroscopy. City: Cengage learning; 2014.
  • [21] Wang N, Ru G, Wang L, Feng J. 1H MAS NMR studies of the phase separation of poly (N-isopropylacrylamide) gel in binary solvents. Langmuir. 2009;25(10):5898–5902. doi:10.1021/la8038363.
  • [22] Zhang R, Lee B, Stafford CM, Douglas JF, Dobrynin AV, Bockstaller MR, Karim, A. (2017) Entropy-driven segregation of polymer-grafted nanoparticles under confinement. Proc Natl Acad Sci. 2017;114(10):2462–2467. doi:10.1073/pnas.1613828114.
  • [23] Lucas EF, Soares BG, Monteiro, EE. Caracterização de polímeros: determinação de peso molecular e análise térmica. Rio de Janeiro: E-papers Serviços Editoriais; 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3be1fce7-926f-4ca6-a0ba-3e009f358b75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.