PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Virtual synchronous generator frequency response study of energy computing and storage devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Renewable energy sources are connected to the grid through inverters, resulting in reduced grid inertia and poor stability. Traditional grid-connected inverters do not have the function of voltage and frequency regulation and can no longer adapt to the new development. The virtual synchronous generator (VSG) has the function of voltage and frequency regulation and has more outstanding advantages than the traditional inverter. Based on the principle of the VSG, the relationship between energy storage capacity, frequency response and output power of the VSG is derived, and the relationship between the virtual inertia coefficient, damping coefficient and frequency characteristics of the VSG and output power is revealed. The mathematical model is established and modeled using the Matlab/Simulink simulation software, and the simulation results verify the relationship between energy storage capacity and frequency response and the output power of the VSG.
Rocznik
Strony
895--907
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wz.
Twórcy
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University, China
Bibliografia
  • [1] Yan X.W., Zhang W.C., Review of VSG control-enabled universal compatibility architecture for future power systems with high-penetration renewable generation, Applied Sciences, vol. 9, no. 7, p. 1484 (2019), DOI: 10.3390/app9071484.
  • [2] Lopes J.A.P., Hatziargyriou N., Mutale J., Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities, Electric Power Systems Research, vol. 77, no. 9, pp. 1189–1203 (2007), DOI: 10.1016/j.epsr.2006.08.016.
  • [3] Yan X.W., Xu Y., Multiple time and space scale reactive power optimization for distribution network with multi-heterogeneous RDG participating in regulation and considering network dynamic reconfiguration, Transactions of China Electrotechnical Society, vol. 34, no. 20, pp. 4358–4372 (2019), DOI: 10.19595/j.cnki.1000-6753.tces.181933.
  • [4] Zhang W.C., Liang H.F., Bin Z., Review of DC technology in future smart distribution grid, IEEE PES Innovative Smart Grid Technologies, Tianjin, China, pp. 1–4 (2012).
  • [5] Guarnieri M., More light on information, IEEE Industrial Electronics Magazine, vol. 9, no. 4, pp. 58–61 (2015), DOI: 10.1109/MIE.2015.2485182.
  • [6] Zhang C.Y., Dou X.B., Sheng W.X., A robust virtual synchronization control strategy for distributed photovoltaic clusters, Proceedings of the CSEE, vol. 40, no. 2, pp. 510–521 (2020), DOI: 10.13334/j.0258-8013.pcsee.182424.
  • [7] Albu M., Visscher K., Creanga D., Storage selection for DG applications containing virtual synchronous generators, IEEE Bucharest Power Tech., Bucharest, Romania, pp. 1–6 (2009).
  • [8] Falahi G., Huang A., Low voltage ride through control of modular multilevel converter based HVDC systems, IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, pp. 4663–4668 (2014).
  • [9] Moulichon V., Debusschere V., Garbuio L., Rahmani M.A., Alamir M., Hadjsaid N., Standardization tests for the industrialization of grid-friendly Virtual Synchronous Generators, Archives of Electrical Engineering, vol. 68, no. 4, pp. 679–688 (2020), DOI: 10.24425/bpasts.2020.134181.
  • [10] Zhong Q.C., Power-electronics-enabled autonomous power systems: architecture and technical routes, IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5907–5918 (2017), DOI: 10.1109/TIE. 2017.2677339.
  • [11] Tan S., Geng H., Yang G., Modeling framework of voltage-source converters based on equivalence with synchronous generator, Modern Power Systems, vol. 6, no. 6, pp. 1291–1305 (2018), DOI: 10.1007/ s40565-018-0433-1.
  • [12] Zhang B.Q., Hu C.B., Ma F.L., Active Power Quality Control for Microgrid with Virtual Synchronous Generator Based on Small-signal Stability Analysis, Automation of Electric Power Systems, vol. 43, no. 23, pp. 210–222 (2019), DOI: 10.7500/AEPS20190118001.
  • [13] Chen J.K., Zeng Q., Xin Y.C., Secondary Frequency Regulation Control Strategy of MMC-MTDC Converter Based on Improved VSG, Power System Technology, vol. 44, no. 4, pp. 1428–1436 (2020), DOI: 10.13335/j.1000-3673.pst.2019.1227.
  • [14] Daili Y., Harrag A., New model of multi-parallel distributed generator units based on virtual synchronous generator control strategy, Energy, Ecology and Environment, vol. 4, no. 5, pp. 222–232 (2019), DOI: 10.1007/s40974-019-00128-3.
  • [15] Gaber Magdy, Shabib G., Elbaset Adel A., Renewable power systems dynamic security using a new coordination of frequency control strategy based on virtual synchronous generator and digital frequency protection, International Journal of Electrical Power and Energy Systems, vol. 109, pp. 351–368 (2019), DOI: 10.1016/j.ijepes.2019.02.007.
  • [16] Liu J., Miura Y., Ise T., Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators, IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3600–3611 (2016), DOI: 10.1109/TPEL.2015.2465852.
  • [17] Luo A., Dong Y.T., Zhou X.P., Sequence-impedance-based stability comparison between vsgs and traditional grid-connected inverters, IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 46–52 (2019), DOI: 10.1109/TPEL.2018.2841371.
  • [18] Lu F.Z., He A.R., Hou K., Low-voltage ride-through control strategy of virtual synchronous generator based on all-pass filter, Electric Power Automation Equipment, vol. 39, no. 5, pp. 176–181 (2019), DOI: 10.16081/j.issn.1006-6047.2019.05.026.
  • [19] Aliipoor J., Miura Y., Ise T., Power system stabilization using virtual synchronous generator with alternating moment of inertia, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451–458 (2015), DOI: 10.1109/JESTPE.2014.2362530.
  • [20] Li D., Zhu Q., Lin S., A self-adaptive inertia and damping combination control of VSG to support frequency stability, IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 397–398 (2017), DOI: 10.1109/TEC.2016.2623982.
  • [21] Li X., Chen G., Ali M. S., Improved virtual synchronous generator with transient damping link and its seamless transfer control for cascaded H-bridge multilevel converter-based energy storage system, IET Electric Power Applications, vol. 13, no. 10, pp. 1535–1543 (2019), DOI: 10.1049/iet-epa.2018.5722.
  • [22] Hong H.H., Gu W., Huang Q., Power Oscillation damping control for microgrid with multiple VSG units, Proceedings of the CSEE, vol. 39, no. 21, pp. 6247–6254 (2019), DOI: 10.13334/j.0258-8013.pcsee.181088.
  • [23] Zeng Z., Shao W.H., Ran L., Mathematical model and strategic energy storage selection of virtual synchronous generators, Automation of Electric Power Systems, vol. 39, no. 13, pp. 22–31 (2015), DOI: 10.7500/AEPS20140901007.
  • [24] Song Q., Zhang H., Sun K., Improved adaptive control of inertia for virtual synchronous generators in islanding micro-grid with multiple distributed generation units, Proceedings of the CSEE, vol. 37, no. 2, pp. 412–423 (2017), DOI: 10.13334/j.0258-8013.pcsee.161658.
  • [25] Shi R., Zhang X., Hu C., Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel micro grids, Journal of Modern Power Systems and Clean Energy, vol. 6, no. 3, pp. 482–494 (2018), DOI: 10.1007/s40565-017-0347-3.
  • [26] Yang F., Shao Y.L., Li D.D., A fuzzy adaptive VSG control strategy considering energy storage capacity and constraint of SOC, Power System Technology, to be published.
  • [27] Prakash Ayyappan B., Kanimozhi R., Design and analysis of the performance of multi-source interconnected electrical power system using resilience random variance reduction technique, Archives of Electrical Engineering, vol. 69, no. 5, pp. 679–688 (2021), DOI: 10.24425/bpasts.2021.137941.
  • [28] Gao J.R., Li G.J., Wang K.Y., Control of grid-connected PV-battery virtual synchronous machine considering battery charging/discharging power limit, Automation of Electric Power Systems, vol. 44, no. 4, pp. 134–141 (2020), DOI: 10.7500/AEPS20190515010.
  • [29] Xing D.F., Tian M.X., Relationship between frequency characteristics of virtual synchronous generator and parameters of energy storage equipment, Power system technology, vol. 45, no. 9, pp. 3582–3593 (2021), DOI: 10.13335/j.1000-3673.pst.2020.1490.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bd5e415-0592-463f-8b69-199bb0c25dc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.