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INTRODUCTION

Osteoarthritis is debilitating condition in 
which hyaline cartilage degenerates. As the dis-
ease progresses, the mechanical parameters of 
the articular cartilage change, and thus the fric-
tion and lubrication parameters in the biological 
bed that is the knee joint. As a result, loss of joint 
motion, pain and stiffness occur, which leads to 
disability [1]. Around the globe over 527 mil-
lion individuals suffer from osteoarthritis (OA) 
[2, 3], what is even more concerning is that the 
disease can be found in younger population of 
patients [4, 5]. The problem with OA is that this 

is an ongoing process in which multiple tissues 
become rearranged in an irreversible way. Never-
theless, the first tissue breakdown is apparent in 
cartilage. During OA mechanical and tribological 
properties of cartilage change dramatically [6–8], 
decreasing the ability to produce smooth and 
painless motion in the affected joint. Cartilage 
has very limited healing capacity [9] and once in-
jured, further breakdown is to be expected. With 
progression of the disease, impairment of daily 
activities – including work and leisure – becomes, 
apart from pain, the main disease burden for the 
affected individuals. In clinical setting, only ac-
curate and fast diagnosis at early disease stages 
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can enable treatment, which will prolong joint 
survivor time. At the moment, the mainstay in OA 
diagnosing is conventional radiography, which is 
based on grading system proposed by Kellgren 
and Lawrence [10]. However, this imaging mo-
dality shows only reactive bone response to car-
tilage damage; therefore, diagnosis of cartilage 
lesion is delayed by nature. Magnetic resonance 
imaging (MRI), which at the moment is the most 
accurate imaging modality for cartilage lesion de-
tection, has its drawbacks such as long examina-
tion time, need for skilled and trained staff as well 
as cost efficiency and long awaiting time [11]. 
MRI referrals should be given to the individuals 
with high suspicion of cartilage damage; however, 
up to 25% of patients referred for knee MRI have 
not received a proper orthopaedic examination 
prior to MRI [12]. As a result, this prolongs the 
awaiting time for the patient with high necessity 
for accurate joint evaluation. Moreover, due to the 
demand of accessibility of the MRI, less experi-
enced radiologists evaluate the images and image 
acquisition is performed on lower quality equip-
ment, and this in result was shown in the conduct-
ed studies to grossly underestimate the cartilage 
lesion grade of cartilage lesion [13]. Therefore, 
orthopaedic community seeks a diagnostic mo-
dality, which would be fast, cheap, reproducible, 
automated and reliable in both orthopaedic and 
general practitioners setting. As it was mentioned 
above, OA changes mechanical and tribological 
properties of cartilage, which as a result changes 
acoustic emission of the joint. On the basis of this 
information, it can be assumed that changes in 
cartilage parameters and thus osteoarthritis can be 
identified based on typical methods used in vibro-
acoustic diagnostics of machinery. In the case of 
machinery, vibroacoustic diagnostics is a method 
of assessing the condition of equipment by ana-
lyzing vibrations and acoustic emissions [14, 15]. 
With this technique, it is possible to detect early 
signs of damage, allowing a faster response and 
minimizing repair costs. Vibroacoustic analysis 
is particularly useful in monitoring the condition 
of bearings, gears, motors and other mechanical 
components, enabling precise location and assess-
ment of wear or damage. Therefore, in literature 
vibroarthrography (VAG) has been proposed as a 
cartilage lesion detection method. Joint ausculta-
tion was firstly introduced in 1902 [16]; however, 
little research have been conducted on this topic 
for almost a century. Vibroacoustic signals record-
ed for knee joints are nonlinear and nonstationary. 

Nonlinearity arises from complex interactions 
within the joint, which are difficult to describe 
using linear models. Nonstationarity means that 
the statistical properties of these signals, such as 
mean and variance, change over time depending 
on the type and intensity of movement. Conse-
quently, advanced methods suitable for analyzing 
nonlinear and time-varying signals are used for 
their analysis. 

Recurrence quantitative analysis (RQA) is a 
method of nonlinear analysis of biomedical sig-
nals that is used in diagnostics and health moni-
toring [17–19]. It is employed in cardiology to an-
alyze heart rate variability, in neurology to exam-
ine EEG signals, in pulmonology to assess respi-
ratory functions, and in rehabilitation to monitor 
movement [20, 21]. RQA is particularly effective 
at identifying subtle changes in signals, which fa-
cilitates early detection of disorders and supports 
the development of personalized medicine.

In recent years, multiple papers showing pos-
sible clinical application of VAG have been pub-
lished [22–26]. Authors’ previous studies have 
proven that VAG can be a reliable method of car-
tilage lesion detection with diagnostic accuracy 
surpassing 90% in the knee joint [27–30]. In these 
papers, authors’ diagnostic system as well as ac-
quisition and signal processing methods were de-
scribed in detail. However, in literature up to this 
date there is no consensus regarding the best prac-
tice in VAG acquisition and processing; therefore, 
in this study the authors aimed to investigate re-
currence quantification as a potential processing 
method for further development of VAG systems.

MATERIALS AND METHODS

Group characteristics and recording 
of vibroacoustic signals

The study included a group of 112 volunteers, 
63 of whom were healthy subjects, while 49 were 
orthopedic outpatients with pre-confirmed osteo-
arthritis of the knee qualified for surgery. Qualifi-
cation for treatment was carried out by a licensed 
orthopedic surgeon based on typical physical tests 
to assess damage to anatomical structures within 
the knee joint and imaging studies such as MRI 
and radiography (X-ray). The basis for the anal-
yses carried out were acoustic signals collected 
during tests conducted on a group of volunteers 
in the conditions of the orthopedic department, 
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as well as in the laboratories of the Lublin Uni-
versity of Technology. The study received a posi-
tive opinion from the Bioethics Committee of the 
Medical University of Lublin, approval number 
KE-0254/261/2019.

Within the framework of cooperation be-
tween Lublin University of Technology and the 
Independent Public Health Care Center in Łęczna 
and the Medical University of Lublin, an experi-
mental study was carried out, during which the 
data used in the article were collected. As the 
primary source of information, bench tests con-
ducted with the use of the measurement system 
developed by the authors, implemented under the 
conditions of the orthopedic department and labo-
ratory rooms of the Lublin University of Technol-
ogy, were adopted.

The measurement system was based on an 
Arduino Mega2560 R3 module. Three CM01B 
[31] piezoelectric contact microphones connect-
ed to analog inputs were used for signal acquisi-
tion. These microphones were then attached with 
double-sided adhesive tape at three anatomical 
locations, that is, on the condyles of the femur on 
the lateral and medial sides and on the patella. A 
galvanic barrier was used on the USB connector 
to ensure patient safety, and the device itself was 
powered by an 11.1V lithium-ion battery. Mea-
surement of the limb position angle was carried 
out using an EMS22A50-D28-LT6 Bourns en-
coder, built into the pivot axis of a typical Breg 
T-Scope Knee orthosis. The block diagram of the 
adopted system is presented in Figure 1. In addi-
tion, a detailed description of the solution is pre-
sented in papers [32–34]. Vibroacoustic signals 
were recorded for repetitive sequences of knee 

joint straightening and bending movements in the 
range of 90°–0°–90°. The study was performed 
for sequences performed in an open kinetic chain 
(OKC) [35, 36]. An OKC is a combination of se-
quentially arranged joints that constitute a com-
plex motor unit, in which the end segments are 
free to move in space [37]. An example of such a 
chain would be knee extension in a sitting posi-
tion. During the recording of signals in the open 
kinetic chain, the procedure was carried out in 
a loose overhang of the legs in the sitting posi-
tion with the knees flexed at 90°, followed by full 
knee extension from 90° to 0° and flexion again 
(from 0° to 90°). Signals were recorded for 10 full 
repetitions of the described procedure.

Recurrence quantification analysis

As the degenerative disease progresses, the 
mechanical parameters of the articular cartilage 
change, and as a result, the friction and lubrica-
tion parameters in the joint change. The occur-
rence of osteoarthritis causes pain and limits 
movement. It can therefore be concluded that the 
vibroarthrorrhagic signals recorded for the pa-
tients diagnosed with chondromalacia of the knee 
joints will have different dynamics and struc-
ture than those recorded for the people from the 
control group. However, it should be noted that 
each of these waveforms has non-linear char-
acteristics. The adopted signal analysis method 
has proven to be highly effective in identifying 
changes in the dynamics of nonlinear experimen-
tal systems based on short and noisy vibroacous-
tic time series [38–40]. From the point of view of 

Figure 1. Block diagram of the measurement system
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To obtain FNNF, the point indicated by Vi is 
selected and then the distance to nearest neighbor 
Vj is calculated in m- dimensional space. Through 
subsequent iterations, the parameter Qi,m is calcu-
lated and described as: 

 

𝑉𝑉𝑖𝑖 = [𝑉𝑉𝑖𝑖, 𝑉𝑉𝑖𝑖−∆𝑖𝑖, 𝑉𝑉𝑖𝑖−2∆𝑖𝑖, … , 𝑉𝑉𝑖𝑖−(𝑀𝑀−1)∆𝑖𝑖]   (1) 
 
 
𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿𝑖𝑖) = − ∑ 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)𝑙𝑙𝑙𝑙 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)

𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘   (2) 
 

𝑄𝑄𝑖𝑖,𝑚𝑚 = |𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚+1
|𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚

  (3) 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑚𝑚) = 1

𝑁𝑁 ∑ Θ(𝑄𝑄𝑖𝑖,𝑚𝑚 − 𝑄𝑄𝑐𝑐)𝑖𝑖   (4) 
 
𝑅𝑅𝑖𝑖,𝑗𝑗 = Θ(𝜀𝜀𝑖𝑖 − |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|)   (5) 
 
𝑅𝑅𝑅𝑅 = 1

𝑁𝑁2 ∑ 𝑅𝑅(𝑖𝑖, 𝑗𝑗)𝑁𝑁
𝑖𝑖,𝑗𝑗=1    (6) 

 

𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁
𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁

𝑘𝑘=1
   (7) 

 
𝐷𝐷𝐹𝐹𝐷𝐷 = − ∑ 𝑝𝑝(𝑙𝑙) ln 𝑝𝑝(𝑙𝑙)𝑁𝑁

𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙   (8) 
 

𝐿𝐿𝐴𝐴𝐴𝐴 =  ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁

𝑣𝑣=1
   (9) 

 

𝐷𝐷𝐷𝐷 = ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙

  (10) 

 

 (3)

The obtained Qim value is compared with the 
selected Qc threshold, and then the cases for which 
Qim exceeds the indicated threshold value are cal-
culated. The FNNF estimation is described as: 
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 (4)

where: N is the number of waveform elements and 
Θ(x) is Heaviside step function. The fraction 
analysis is repeated until the optimal value 
M = m is reached. Then, this means that 
some of the false neighbors tend to zero. 

The result of the research for VAG signals 
in the control group were: Δi = 8 and M = 3. 
These results allowed for further steps to be 
taken, such as determining parameters in the 
RQA analysis and comparing the results of the 
group of patients with osteoarthritis with the 
results in the control group. The recurrence 
plots are a method of visualizing matrices. 
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 (5)

where: xi ∊ Rd; εi means the threshold value and i, 
j = 1, 2, …, N. In the case of the current 
analysis, for the threshold value ℰ = 0.56 
sample charts were obtained and present-
ed in Figure 2 and Figure 3.

classifying the condition of knee joints, the use of 
recurrence analysis in the research was beneficial.

The first stage of this nonlinear analysis was 
the phase reconstruction process. In order to real-
ize the reconstruction, the embedding properties 
must be tested. This is related to the properties 
of the phase space, which can be reconstructed 
by filling in the missing coordinates with time-
delayed coordinates [41]. Describing the VAG in-
put signal as V, sampled at time t with increment 
i can be written: 
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𝑄𝑄𝑖𝑖,𝑚𝑚 = |𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚+1
|𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚

  (3) 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑚𝑚) = 1

𝑁𝑁 ∑ Θ(𝑄𝑄𝑖𝑖,𝑚𝑚 − 𝑄𝑄𝑐𝑐)𝑖𝑖   (4) 
 
𝑅𝑅𝑖𝑖,𝑗𝑗 = Θ(𝜀𝜀𝑖𝑖 − |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|)   (5) 
 
𝑅𝑅𝑅𝑅 = 1

𝑁𝑁2 ∑ 𝑅𝑅(𝑖𝑖, 𝑗𝑗)𝑁𝑁
𝑖𝑖,𝑗𝑗=1    (6) 

 

𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁
𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁

𝑘𝑘=1
   (7) 

 
𝐷𝐷𝐹𝐹𝐷𝐷 = − ∑ 𝑝𝑝(𝑙𝑙) ln 𝑝𝑝(𝑙𝑙)𝑁𝑁

𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙   (8) 
 

𝐿𝐿𝐴𝐴𝐴𝐴 =  ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁

𝑣𝑣=1
   (9) 

 

𝐷𝐷𝐷𝐷 = ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙

  (10) 

 

 (1)

where: Δi is the time delay and M is the embed-
ding dimension. By researching AMI (av-
erage mutual information) [42, 43] and 
FNNF (False Nearest Neighbour Frac-
tion) [42, 43] their values were obtained. 
AMI is described as the conditional prob-
ability of a sequence of events: 

 

𝑉𝑉𝑖𝑖 = [𝑉𝑉𝑖𝑖, 𝑉𝑉𝑖𝑖−∆𝑖𝑖, 𝑉𝑉𝑖𝑖−2∆𝑖𝑖, … , 𝑉𝑉𝑖𝑖−(𝑀𝑀−1)∆𝑖𝑖]   (1) 
 
 
𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿𝑖𝑖) = − ∑ 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)𝑙𝑙𝑙𝑙 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)

𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘   (2) 
 

𝑄𝑄𝑖𝑖,𝑚𝑚 = |𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚+1
|𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚

  (3) 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑚𝑚) = 1

𝑁𝑁 ∑ Θ(𝑄𝑄𝑖𝑖,𝑚𝑚 − 𝑄𝑄𝑐𝑐)𝑖𝑖   (4) 
 
𝑅𝑅𝑖𝑖,𝑗𝑗 = Θ(𝜀𝜀𝑖𝑖 − |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|)   (5) 
 
𝑅𝑅𝑅𝑅 = 1

𝑁𝑁2 ∑ 𝑅𝑅(𝑖𝑖, 𝑗𝑗)𝑁𝑁
𝑖𝑖,𝑗𝑗=1    (6) 

 

𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁
𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁

𝑘𝑘=1
   (7) 

 
𝐷𝐷𝐹𝐹𝐷𝐷 = − ∑ 𝑝𝑝(𝑙𝑙) ln 𝑝𝑝(𝑙𝑙)𝑁𝑁

𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙   (8) 
 

𝐿𝐿𝐴𝐴𝐴𝐴 =  ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁

𝑣𝑣=1
   (9) 

 

𝐷𝐷𝐷𝐷 = ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙

  (10) 

 

 (2)

where: to divide the value into 116 equal parts, 
the amplitudes of the recorded acoustic 
signals fall within the range V∊[Vmin, 
Vmax], pk means the probability of 
finding the value of V in the kth inter-
val and pkl denotes the probability that 
V falls into the lth time interval δi. Op-
timal time delay Δi=δi is determined on 
the basis of obtaining the first mini-
mum of AMI, for which the investigat-
ed events are so independent that a new 
coordinate can be determined. 

Figure 2. Recurrence plot of a person from the control group
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In further analyses, the VAG acoustic sig-
nals were qualitatively analyzed and recurrence 
indicators were determined, such as: recurrence 
rate (RR), determinism (DET), maximum length 
(LMAX ), entropy (ENT), laminarity (LAM) and 
trapping time (TT). The RR parameter in qualita-
tive analysis is defined as:

 

𝑉𝑉𝑖𝑖 = [𝑉𝑉𝑖𝑖, 𝑉𝑉𝑖𝑖−∆𝑖𝑖, 𝑉𝑉𝑖𝑖−2∆𝑖𝑖, … , 𝑉𝑉𝑖𝑖−(𝑀𝑀−1)∆𝑖𝑖]   (1) 
 
 
𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿𝑖𝑖) = − ∑ 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)𝑙𝑙𝑙𝑙 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)

𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘   (2) 
 

𝑄𝑄𝑖𝑖,𝑚𝑚 = |𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚+1
|𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚

  (3) 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑚𝑚) = 1

𝑁𝑁 ∑ Θ(𝑄𝑄𝑖𝑖,𝑚𝑚 − 𝑄𝑄𝑐𝑐)𝑖𝑖   (4) 
 
𝑅𝑅𝑖𝑖,𝑗𝑗 = Θ(𝜀𝜀𝑖𝑖 − |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|)   (5) 
 
𝑅𝑅𝑅𝑅 = 1

𝑁𝑁2 ∑ 𝑅𝑅(𝑖𝑖, 𝑗𝑗)𝑁𝑁
𝑖𝑖,𝑗𝑗=1    (6) 

 

𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁
𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁

𝑘𝑘=1
   (7) 

 
𝐷𝐷𝐹𝐹𝐷𝐷 = − ∑ 𝑝𝑝(𝑙𝑙) ln 𝑝𝑝(𝑙𝑙)𝑁𝑁

𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙   (8) 
 

𝐿𝐿𝐴𝐴𝐴𝐴 =  ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁

𝑣𝑣=1
   (9) 

 

𝐷𝐷𝐷𝐷 = ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙

  (10) 

 

 (6)

The recurrence rate determines the share of 
black dots on the RP graph, i.e. the density of 
repetition points. This coefficient corresponds to 
the probability of a specific condition reoccur-
ring and similarity to previous system response. 
Another parameter used in further analyzes was 
determinism. It is defined as:

 

𝑉𝑉𝑖𝑖 = [𝑉𝑉𝑖𝑖, 𝑉𝑉𝑖𝑖−∆𝑖𝑖, 𝑉𝑉𝑖𝑖−2∆𝑖𝑖, … , 𝑉𝑉𝑖𝑖−(𝑀𝑀−1)∆𝑖𝑖]   (1) 
 
 
𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿𝑖𝑖) = − ∑ 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)𝑙𝑙𝑙𝑙 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)

𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘   (2) 
 

𝑄𝑄𝑖𝑖,𝑚𝑚 = |𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚+1
|𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚

  (3) 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑚𝑚) = 1

𝑁𝑁 ∑ Θ(𝑄𝑄𝑖𝑖,𝑚𝑚 − 𝑄𝑄𝑐𝑐)𝑖𝑖   (4) 
 
𝑅𝑅𝑖𝑖,𝑗𝑗 = Θ(𝜀𝜀𝑖𝑖 − |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|)   (5) 
 
𝑅𝑅𝑅𝑅 = 1

𝑁𝑁2 ∑ 𝑅𝑅(𝑖𝑖, 𝑗𝑗)𝑁𝑁
𝑖𝑖,𝑗𝑗=1    (6) 

 

𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁
𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁

𝑘𝑘=1
   (7) 

 
𝐷𝐷𝐹𝐹𝐷𝐷 = − ∑ 𝑝𝑝(𝑙𝑙) ln 𝑝𝑝(𝑙𝑙)𝑁𝑁

𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙   (8) 
 

𝐿𝐿𝐴𝐴𝐴𝐴 =  ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁

𝑣𝑣=1
   (9) 

 

𝐷𝐷𝐷𝐷 = ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙

  (10) 

 

 (7)

where: P(l) is the frequency distribution of length 
l diagonal lines. This measure is related to 
the predictability of the dynamic system. 
In comparison, white noise or nonperiod-
ic behavior have an RP graph with single 
dots and very few diagonal lines, while a 
periodic process has an RP graph with a 
small number of single dots and long di-
agonal lines.

The next indicator examined was the largest 
length of the diagonal line LMAX. Another pa-
rameter analyzed was Shannon entropy, defined 
as follows: 
 

𝑉𝑉𝑖𝑖 = [𝑉𝑉𝑖𝑖, 𝑉𝑉𝑖𝑖−∆𝑖𝑖, 𝑉𝑉𝑖𝑖−2∆𝑖𝑖, … , 𝑉𝑉𝑖𝑖−(𝑀𝑀−1)∆𝑖𝑖]   (1) 
 
 
𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿𝑖𝑖) = − ∑ 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)𝑙𝑙𝑙𝑙 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)

𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘   (2) 
 

𝑄𝑄𝑖𝑖,𝑚𝑚 = |𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚+1
|𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚

  (3) 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑚𝑚) = 1

𝑁𝑁 ∑ Θ(𝑄𝑄𝑖𝑖,𝑚𝑚 − 𝑄𝑄𝑐𝑐)𝑖𝑖   (4) 
 
𝑅𝑅𝑖𝑖,𝑗𝑗 = Θ(𝜀𝜀𝑖𝑖 − |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|)   (5) 
 
𝑅𝑅𝑅𝑅 = 1

𝑁𝑁2 ∑ 𝑅𝑅(𝑖𝑖, 𝑗𝑗)𝑁𝑁
𝑖𝑖,𝑗𝑗=1    (6) 

 

𝐷𝐷𝐷𝐷𝐷𝐷 = ∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁
𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑘𝑘𝑙𝑙(𝑘𝑘)𝑁𝑁

𝑘𝑘=1
   (7) 

 
𝐷𝐷𝐹𝐹𝐷𝐷 = − ∑ 𝑝𝑝(𝑙𝑙) ln 𝑝𝑝(𝑙𝑙)𝑁𝑁

𝑘𝑘=𝑘𝑘𝑚𝑚𝑖𝑖𝑙𝑙   (8) 
 

𝐿𝐿𝐴𝐴𝐴𝐴 =  ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁

𝑣𝑣=1
   (9) 

 

𝐷𝐷𝐷𝐷 = ∑ 𝑣𝑣𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙
∑ 𝑙𝑙(𝑣𝑣)𝑁𝑁𝑣𝑣=𝑣𝑣𝑚𝑚𝑖𝑖𝑙𝑙

  (10) 

 

 (8)

Entropy reflects the degree of complexity of 
the deterministic structure of a system. Another 
indicator examined was laminarity. Laminarity is 
defined as: 

 

𝑉𝑉𝑖𝑖 = [𝑉𝑉𝑖𝑖, 𝑉𝑉𝑖𝑖−∆𝑖𝑖, 𝑉𝑉𝑖𝑖−2∆𝑖𝑖, … , 𝑉𝑉𝑖𝑖−(𝑀𝑀−1)∆𝑖𝑖]   (1) 
 
 
𝐴𝐴𝐴𝐴𝐴𝐴(𝛿𝛿𝑖𝑖) = − ∑ 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)𝑙𝑙𝑙𝑙 𝑝𝑝𝑘𝑘𝑘𝑘(𝛿𝛿𝑖𝑖)

𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘   (2) 
 

𝑄𝑄𝑖𝑖,𝑚𝑚 = |𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚+1
|𝑉𝑉𝑖𝑖−𝑉𝑉𝑗𝑗|𝑚𝑚

  (3) 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑚𝑚) = 1

𝑁𝑁 ∑ Θ(𝑄𝑄𝑖𝑖,𝑚𝑚 − 𝑄𝑄𝑐𝑐)𝑖𝑖   (4) 
 
𝑅𝑅𝑖𝑖,𝑗𝑗 = Θ(𝜀𝜀𝑖𝑖 − |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|)   (5) 
 
𝑅𝑅𝑅𝑅 = 1
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where: P(v) is the frequency distribution of the 
length v of vertical lines, starting from 
vmin. This measure is related to the number 
of laminar phases in the system (degree of 
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It provides the information about the lami-
narity time, i.e. the time the system remains in a 
given state. The parameters presented above were 
used to classify the condition of the knee joints 
using neural networks. 

Classification and evaluation of classifiers

The application of classification using neural 
networks in solving medical problems has opened 
up new possibilities in the diagnosis, monitoring 
and prognosis of the course of many diseases. Neu-
ral networks, with their ability to model complex 
patterns and relationships in large data sets, have 
become a key tool in precision medicine [44, 45]. 
In this study, multilayer perceptron and radial basis 

Figure 3. Recurrence plot of a person with diagnosed chondromalacia of knee joint
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function (RBF) radial basis function neural net-
works were used to solve the classification prob-
lem. Classification included case assignment to 
distinguish between healthy individuals (HC) and 
those with knee osteoarthritis (OA). 

Multilayer perceptron neural networks are 
supervised learning networks with full inter-layer 
connectivity that consist of an input layer, one or 
more hidden layers, and an output layer. They use 
activation functions to model complex nonlinear 
relationships and learn using a back propaga-
tion algorithm, adjusting the connection weights. 
MLP is effective in pattern recognition, classifica-
tion and prediction, finding applications in vari-
ous fields such as medicine, finance, robotics and 
process control [46, 47].

RBF (radial basis function) neural networks 
are a type of neural networks characterized by the 
use of radial functions (e.g. Gaussian) in the hid-
den layer, which respond to the distance of the 
input vector from a fixed center. They consist of 
three layers: input, hidden layer with radial func-
tions and output. Their main advantage is the 
ability to efficiently model complex spatial and 
nonlinear relationships. RBF networks are used 
in a wide range of applications, such as function 
approximation, classification, regression, and 
in control systems and forecasting, due to their 
speed and efficiency in interpolation in multidi-
mensional data spaces [48, 49].

All calculations were carried out in the Statis-
tica 13.3 software environment. The measures de-
termined in the RQA analysis described in previ-
ous chapters were used as classifier inputs. They 
were determined separately for each anatomical 
location. A total of 18 parameters were adopted. 
Various subdivisions of data into training, vali-
dation, and testing sets, including 50–25–25 and 
60–20–20, were evaluated. The results are pre-
sented for the subdivision where the data were 
randomly allocated as 70% for training, 15% for 
testing, and 15% for validation.

The comparison of classifiers was based on 
several key metrics, such as classification accu-
racy, which represents the ratio of correct predic-
tions to the total number of observations. This 
measure can be misleading for unbalanced data. 
ROC and AUC curves were also used, given that 
they allow an assessment of the model’s ability to 
distinguish between classes, with AUC as an over-
all measure of effectiveness. Due to the disparity 
of the analyzed groups, Matthews Correlation 
Coefficient and F1 Score values were determined. 

The Matthews correlation coefficient (MCC) 
takes into account all aspects of the confusion 
matrix, offering a balanced score for unbalanced 
sets [50]. The F1 score, on the other hand, is a 
harmonious average of precision and sensitivity, 
ideal for balancing both for unbalanced data [51]. 
It is important to tailor the choice of metrics to 
the specifics of the data and the problem, avoid-
ing basing model evaluation on a single metric, 
and this is what was done in this paper.

RESULTS

This chapter presents the results of a multi-
layer perceptron and radial basis function neural 
network classification performed based on recur-
rence quantification analysis (RQA) values deter-
mined for acoustic signals generated by moving 
knee joints. Classification involved assigning 
cases to one of two groups, i.e. OA – subjects 
with confirmed degenerative changes, and HC 
– healthy volunteers without knee joint changes. 
All classification calculations were carried out in 
the Statistica version 13.3 software environment, 
which not only provided advanced data process-
ing and neural network analysis tools, but also 
enabled detailed model verification and valida-
tion. Table 1 shows the detailed results of learn-
ing, testing and validation accuracy for each of 
the neural networks analyzed. The accuracy mea-
sure used varied depending on the type of output 
variable. For qualitative variables used in classi-
fication, accuracy was expressed as the relative 
number of correctly classified cases to the total 
number of cases.

In the learning group, a higher accuracy of 
95% was obtained for the MPL network, while in 
the case of classification using the RBF network, 
the accuracy was 83.5%. The accuracy in the test 
set was 75% of correctly assigned cases for MPL 
and 62.5% for RBF, respectively. In the valida-
tion set, it was 87.5% of correctly assigned cases 
for MPL and 81.25% for RBF, respectively. The 
learning algorithm for MPL was BFGS 26, while 
for the RBF network it was RBFT. The BFGS 
(Broyden-Fletcher-Goldfarb-Shanno) algorithm 
is a popular quasi-Newtonian method used for 
numerical optimization to find local minima of 
differentiable functions. Rather than computing 
the Hesse matrix directly, the algorithm uses its 
approximation with an inverse that is updated 
at each iteration based on gradients. BFGS is 
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valued for its good convergence and efficiency, 
but its use can be limited for very large optimi-
zation problems due to the need to store matri-
ces of large size. The error functions were SOS 
(sum of squares) for MLP and Entropy for RBF, 
respectively. For SOS, the error is calculated as 
the sum of the squares of the differences between 
the target values and the values obtained at the 
output of the individual output neurons. This is 
the typical error function used when training neu-
ral networks. In the case of Entropy, the error is 
the sum of the products of the set values and the 
logarithms of the errors for each output neuron. 
The activation function is the function used to 
transform the activation level of a unit (neuron) 
into an output signal. For MLP classification, the 
activation function was Tanh, while for RBF it 
was Gauss. The tanh (hyperbolic tangent) activa-
tion function transforms inputs to a range of -1 to 
1 and is often used in the hidden layers of neu-
ral networks due to its centering and symmetry 
properties. Tanh helps maintain the scale of the 
data, which facilitates learning, but can lead to fad-
ing gradients, especially with large input values, 
which slows down the learning process. The func-
tion is also more computationally expensive than 
some other activation functions, such as ReLU. 
The Gaussian activation function is a less com-
mon, but interesting function used in neural net-
works. Instead of the traditional linear or nonlinear 
approach used by most activation functions, the 

Gaussian function is based on a normal distribu-
tion. The activation functions in the output layer 
were a linear function in MLP and – in the case of 
RBF Softmax – an exponential function, the value 
of which, however, is further normalized so that 
the sum of activations for the entire layer equals 1. 
The confusion matrix and details of the classifica-
tion process for each method are shown in Table 2. 

A higher classification accuracy 91.07% was 
achieved using MLP-type neural networks with 
95.24% in the HC group and 85.71% in the OA 
group, respectively. For classification using RBF 
networks, the overall accuracy was almost 10% 
lower at 80.36% obtaining 85.71% correct as-
signments in the HC group and 73.47% in the OA 
group, respectively.

A summary of the ROC curves for each clas-
sification method is shown in Figure 4, while the 
parameters of the curves are presented in Table 3, 
along with other parameters that allow compari-
son of the selected classification methods. 

Higher parameters were obtained with the 
MLP multilayer perceptron classifier for which 
the global accuracy was 91.07% with F1 score 
and MCC values of 0.894 and 0.819, respectively. 
The value of the area under the curve for this clas-
sification method was AUC = 0.943 with a sensi-
tivity of 0.933 and specificity of 0.896. 

For RBF, these parameters were lower. Global 
classification accuracy was just over 80% with F1 
Score values of 0.804 and MCC values of 0.655. 

Table 1. Accuracy parameters for learning, testing and validation of the MLP and RBF neural network

Network name Accuracy of 
learning

Accuracy of 
testing

Accuracy of 
validation

Learning 
algorithm Error function Activation 

(hidden)
Activation 
(output)

MLP 18-54-2 95.00 75.00 87.50 BFGS 26 SOS Tanh Linear

RBF 18-35-2 83.75 62.50 81.25 RBFT Entropy Gauss Softmax

Table 2. Confusion matrix and details of the classification process
Network name HC OA Total

MLP 18-54-2

Total 63 49 112

Correct 60 42 102

Incorrect 3 7 10

Correct (%) 95.24 85.71 91.07

Incorrect (%) 4.76 14.29 8.93

RBF 18-35-2

Total 63 49 112

Correct 54 36 90

Incorrect 9 13 22

Correct (%) 85.71 73.47 80.36

Incorrect (%) 14.29 26.53 19.64
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The value of the area under the ROC curve for 
RBF was 0.766 with sensitivity and specificity of 
0.800 and 0.806, respectively. Detailed param-
eters of the classifiers are shown in Table 3.

DISCUSSION

Vibroacoustic joint diagnostics combined 
with the use of neural network classification is a 
cutting-edge approach that combines advanced 
acoustic signal recording and processing tech-
niques with machine learning to assess the health 
of knee joints. By analyzing the sounds produced 
by joints as they move, it is possible to pick up 
subtle anomalies that may indicate the early stag-
es of osteoarthritis or other joint damage.

The method is based on the recording of the 
sounds and vibrations generated by the knee joint 
during the performance of standard repetitive motion 
sequences according to an established test protocol. 
The resulting recordings are then processed using 

specialized dedicated algorithms for analyzing non-
linear and non-stationary signals, which isolate their 
characteristic features. These features are later used 
as input for neural networks that have been trained 
to classify various joint conditions based on the 
previously collected data. The application of neural 
network-based classification in medicine is not with-
out its challenges, such as ensuring data privacy and 
security, the interpretability of models, and the need 
for large datasets for training.

Nonetheless, the potential of this technology 
to contribute to advances in diagnosis and treat-
ment is enormous, and its development and im-
plementation are constantly being monitored and 
developed by the scientific and medical commu-
nity. Up to date, there has been no strict protocol 
of acquisition and signal processing in regard to 
VAG. Factors such as sensor placement, exami-
nation protocol can affect significantly obtained 
results [52]. Also, the examination protocol in-
cluding closed or open kinematic chain can affect 
the results [35]. Therefore, multiple factors can 

Figure 4. Comparison of ROC curves for all classification methods

Table 3. Details of classification parameters using the various methods

Network name Accuracy 
(%) Sensitivity Specificity AUC ROC 

threshold Precision Recall F1 score MCC

MLP 18-11-2 91.07 0.933 0.896 0.943 0.631 0.857 0.933 0.894 0.819

RBF 18-29-2 80.36 0.800 0.806 0.809 0.544 0.735 0.800 0.766 0.599
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influence the obtained results. In the conducted 
study, the authors have tried to answer the ques-
tion concerning best signal processing method. 
Recurrence quantitative analysis which is utilized 
in analyzing other medical signals, especially 
in regard to subtle changes in recorded signals. 
In this study, a combination of RQA and MLP 
showed high specificity of 0.896 and high sen-
sitivity of 0.933. These results correspond with 
other authors showing VAG to surpass 90% in 
sensitivity and specificity, as well as accuracy. 
Kieselev et al. [23] in their study showed simi-
lar sensitivity (0.92) but much lower specificity 
(0.78); however, their study was performed on 
small sample group (n = 28). Higher accuracy, 
reaching 0.94, was found in a study conducted 
by Nalband et al. In this study, least square sup-
port vector machines signal processing was intro-
duced. However, this study was also performed 
on small sample (n = 24) [53]. Other approaches 
towards signal processing have also been pub-
lished. On the basis of entropy analysis, the same 
research group showed accuracy reaching 0.86 
[54]. On the other hand, Wu et al. showed that 
analysis of entropy can produce diagnostic accu-
racy oscillating at 0.8 [55]. Other research groups 
published their results showing 100% accuracy 
[26]. Table 4 summarizes the results presented by 
other authors in the literature.

However, most of these studies are subjected 
to a bias due to verification method, which is MRI. 
Even though MRI is gold standard in cartilage 
evaluation. it still underestimates the cartilage le-
sion grade and is more accurate in grade III and 
IV lesions rather than I and II [13]. Regardless 
of the lack of unified examination protocol, first 

clinical applications of VAG can be found in lit-
erature [66], which shows high potential for this 
diagnostic modality. However, further unification 
of results and finding the best method of acquisi-
tion and signal processing have to follow in order 
to fully use potential of VAG. Vibroacoustic diag-
nosis of the knee joint has numerous limitations 
that affect its effectiveness and clinical accep-
tance. Although it is less invasive and potentially 
faster, it does not provide as detailed information 
about the structure of the joint as MRI or CT. It 
requires additional studies to establish its reliabil-
ity, reproducibility and standards of use. Interpre-
tation of the results due to the complex processing 
of nonlinear and non-stationary VAG signals can 
be complicated, limiting its availability and use 
in daily clinical practice. In addition, its wide ac-
ceptance in the medical community is hampered 
by a lack of evidence for its effectiveness in a va-
riety of diagnostic applications and a lack of well-
defined testing protocols. The main limitations of 
the proposed method observed at the stage of the 
conducted research, undoubtedly include the size 
and diversity of the groups. Vibroacoustic joint 
diagnostics is evolving, offering future prospects, 
such as improved accuracy with modern sensors 
and algorithms, and integration with other diag-
nostic methods.

It has the potential for early detection and 
monitoring of degenerative diseases, which could 
reduce the costs and increase the availability of 
diagnostics, especially in less-resourced regions. 
In order to fully evaluate the analyzed problem 
and realize the potential of the proposed method, 
further studies should be carried out on a much 
larger number of cases, taking into account the 

Table 4. Comparison diagnostic results of proposed method with other related works
Authors Classification methods Accuracy (%) Sensitivity Specificity AUC

Mascarenhas et al. [56] Random forest 80.89 0.868 0.765 0.817

Sharma and Acharya [57] LS-SVM 89.89 0.914 0.889 N/A

Nalband  et al. [58] LS-SVM 83.14 0.981 0.622 0.671

Wu et al. [59] Bayesian decision rule 86.67 0.750 0.936 0.910

Cai  et al. [60] Multi-classifier combination system 88.76 0.737 1.000 0.952

Karpiński [29] MLP 90.00 0.917 0.885 0.941

Mu  et al. [61] Strict 2-surface proximal classifier 91.01 0.947 0.882 0.950

Zheng et al. [62] SVM, Bayesian decision rule 91.76 0.884 0.952 0.912

Kim  et al. [63] Back-propagation neural network 95.40 0.920 0.987 N/A

Karpiński  et al.  [28] MLP, RBF 98.53 0.958 1.000 1.000

Balajee et al. [64] LS-SVM 98.67 0.934 0.937 N/A

Rangayyan and Wu  [65] RBF 98.89 0.921 0.882 0.917
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full 4 – point scale according to the ICRS clas-
sification and determining the precise anatomical 
locations of the occurrence of degenerative chang-
es. Additionally, future studies should focus on the 
angular position of the joint and conduct analyses 
across a broader range of motion, encompassing 
the full range of the knee joint. It will be infor-
mative to correlate the contact zone area with the 
recorded vibroacoustic signals. By understand-
ing the contact area as a function of joint angle 
and analyzing the signal characteristics to assess 
the degree of damage, it will be possible to ac-
curately localize degenerative changes. Efforts are 
also planned for standardization and wider clinical 
acceptance, supported by extensive research and 
collaboration between engineers and physicians.

CONCLUSIONS

Knee joint vibroacoustics is an innovative, 
non-invasive diagnostic method that assesses 
joint health by analysing the sounds and vibra-
tions generated during movement. This technique 
can provide a quick and potentially less expen-
sive alternative to traditional imaging methods 
such as MRI or CT. While it offers prospects for 
early diagnosis of joint disease, it requires further 
research to confirm its accuracy and reliability. 
Vibroacoustics has potential for use in disease 
monitoring and preventive screening. The re-
sults showed that the MLP-type neural network 
performed significantly better in solving the clas-
sification problem, obtaining a classification ac-
curacy close to 91%. In conclusion, vibroacoustic 
diagnosis of knee joints using neural networks 
presents itself as a promising tool that could revo-
lutionize the way joint health is diagnosed and 
monitored by offering a fast, accurate and non-
invasive method of examination.
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