PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of cladding modes in SMF-28 fibers with TFBG structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article proposes an unequivocal method of labeling and numbering the cladding modes propagating in single-mode optical waveguides with tilted periodic structures. The unambiguous determination of individual propagating modes in this type of optical fiber is crucial for their use in sensory systems. The selection of the appropriate spectral range and mode determines the sensitivity and measuring range of tilted fiber Bragg grating (TFBG) sensors. The measurement methods proposed by individual research teams using TFBGs as transducers are usually based on the selection of specific modes. Unification of the labeling of modes and their numbering enables comparison of the basic metrological parameters of individual measurement methods and reproduction and verification of the proposed sensors and methods in the laboratories of other scientific and research centers.
Rocznik
Strony
507--518
Opis fizyczny
Bibliogr. 26 poz., rys., wykr., wzory
Twórcy
  • Lublin University of Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Institute of Information and Computational Technologies CS MES RK, 050010, 125 Pushkin str., Almaty, Republic of Kazakhstan
  • Almaty University of Power Engineering and Telecommunications named after Gumarbek Daukeyev, Almaty 050010, Kazakhstan, Almaty, Shevshenko 28
  • Institute of Information and Computational Technologies CS MES RK, 050010, 125 Pushkin str., Almaty, Republic of Kazakhstan
  • Taraz State University after M.Kh. Dulaty, Tole Bi St 40, Taraz, Republic of Kazachstan
Bibliografia
  • [1] Skorupski, K., & Mroczka, J. (2014). Effect of the necking phenomenon on the optical properties of soot particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 141, 40-48. https://doi.org/10.1016/j.jqsrt.2014.03.001
  • [2] Mroczka, J., & Szczuczyński, D. (2013). Improved technique of retrieving particle size distribution from angular scattering measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 129, 48-59. https://doi.org/10.1016/j.jqsrt.2013.05.030
  • [3] Świrniak, G., & Mroczka, J. (2022). Forward and inverse analysis for particle size distribution measurements of disperse samples: A review. Measurement, 187, 110256. https://doi.org/10.1016/j.measurement.2021.110256
  • [4] Frieden, J., Cugnoni, J., Botsis J., Gmür, T., & Ćorić, D. (2010). High-speed internal strain measurements in composite structures under dynamic load using embedded FBG sensors. Composite Structures, 92(8), 1905-1912. https://doi.org/10.1016/j.compstruct.2010.01.007
  • [5] Skorupski, K., Harasim, D., Panas, P., Cięszczyk, S., Kisała, P., Kacejko, P., Mroczka, J., & Wydra, M. (2020). Overhead Transmission Line Sag Estimation Using the Simple Opto-Mechanical System with Fiber Bragg Gratings - Part 2: Interrogation System. Sensors, 20(9), 2652. https://doi.org/10.3390/s20092652
  • [6] Liu, M.-Y. Zhou, S.-G. Song, H. Zhou, W.-J., & Zhang, X. (2018). A novel fibre Bragg grating curvature sensor for structure deformation monitoring. Metrology and Measurement Systems, 25(3), 577-587. https://doi.org/10.24425/123899
  • [7] Detka, M., & Kaczmarek, Z. (2013). Distributed Strain Reconstruction Based on a Fiber Bragg Grating Reflection Spectrum. Metrology and Measurement Systems, 1, 53-64. https://doi.org/10.2478/mms-2013-0005
  • [8] Imas, J. J., Albert, J., Del Villar, I., Ozcáriz, A., Zamarreño, C. R., & Matías, I. R. (2022). Mode Transitions and Thickness Measurements During Deposition of Nanoscale TiO2 Coatings on Tilted Fiber Bragg Gratings. Journal of Lightwave Technology, 40(17), 6006-6012. https://doi.org/10.1109/JLT.2022.3186596
  • [9] Ooi, Ch.-W., Low, M. L., Udos, W., Lim, K.-S. & Ahmad, H. (2022). Novel Schiff base functionalized 80-μm tilted fiber Bragg grating chemosensor for copper(II) ion detection. Optical Fiber Technology, 71, 102920. https://doi.org/10.1016/j.yofte.2022.102920
  • [10] Cięszczyk, S., Harasim, D., & Kisała, P. (2018). Novel twist measurement method based on TFBG and fully optical ratiometric interrogation. Sensors and Actuators A, 272, 18-22. https://doi.org/10.1016/j.sna.2018.01.048
  • [11] Harasim, D., Kisała P., Yeraliyeva, B., & Mroczka J. (2021). Design and Manufacturing Optoelectronic Sensors for the Measurement of Refractive Index Changes under Unknown Polarization State. Sensors, 21(21), 7318. https://doi.org/10.3390/s21217318
  • [12] Harasim, D., & Cięszczyk, S. (2022). A novel method of elimination of light polarization cross sensitivity on tilted fiber Bragg grating bending sensor. Metrology and Measurement Systems, 29(4), 737-749. https://doi.org/10.24425/mms.2022.143066
  • [13] Kisała, P. (2022). Physical foundations determining spectral characteristics measured in Bragg gratings subjected to bending. Metrology and Measurement Systems, 29(3), 573-584. https://doi.org/10.24425/mms.2022.142275
  • [14] Takeda, S., Sato, M., & Ogasawara T. (2022). Simultaneous measurement of strain and temperature using a tilted fiber Bragg grating. Sensors and Actuators A: Physical, 335, 113346. https://doi.org/10.1016/j.sna.2021.113346
  • [15] Zhu, F., Hao, X., Zhang, Y., Jia, P., Su, J., Wang, L., Liu, L., Xi, L., & An, G. (2022). D-shaped optic fiber temperature and refractive index sensor assisted by tilted fiber Bragg grating and PDMS film. Sensors and Actuators A: Physical, 346, 113870. https://doi.org/10.1016/j.sna.2022.113870
  • [16] Tolegenova, A., Kisała, P., Zhetpisbayeva, A., Mamyrbayev, O., & Medetov, B. (2019). Experimental determination of the characteristics of a transmission spectrum of tilted fiber Bragg gratings. Metrology and Measurement Systems, 26(3), 581-589. https://doi.org/10.24425/mms.2019.129585
  • [17] Harasim, D. (2017). The Influence of Fibre Bending on Polarization-Dependent Twist Sensor Based on Tilted Bragg Grating. Metrology and Measurement Systems, 24(3), 577-584. https://doi.org/10.1515/mms-2017-0038
  • [18] Kisała, P., Skorupski, K., Cięszczyk, S., Panas, P., & Klimek J. (2018). Rotation and twist measurement using tilted fibre Bragg gratings. Metrology and Measurement Systems, 25(3), 429-440. https://doi.org/10.24425/123893
  • [19] Van, L. C., Le Tran, B. T., Van, T. D., Minh, N. V. T., Thi, T. N., Thi, H. P. N., & Nguyen, M. H. T. (2023). Supercontinuum generation in highly birefringent fiber infiltrated with carbon disulfide. Optical Fiber Technology, 75, 103151. https://doi.org/10.1016/j.yofte.2022.103151
  • [20] Guo, T., Liu, F., Guan, B.-O., & Albert, J. (2016) [INVITED] Tilted fiber grating mechanical and biochemical sensors. Optics & Laser Technology, 78, Part B, 19-33. https://doi.org/10.1016/j.optlastec.2015.10.007
  • [21] Dong, X., Zhang, H., Liu, B., & Miao, Y. (2011). Tilted fiber Bragg gratings: Principle and sensing applications. Photonic Sensors, 1, 6-30. https://doi.org/10.1007/s13320-010-0016-x
  • [22] Laffont, G., & Ferdinand, P. (2001). Tilted short-period fibre-Bragg-grating- induced coupling to cladding modes for accurate refractometry. Measurement Science and Technology, 12(7), 765-770. https://doi.org/10.1088/0957-0233/12/7/302
  • [23] Feng, W., & Niu, S. (2023). Intensity-modulated liquid-level and temperature sensor based on cascaded air bubble and fiber Bragg grating interferometer. Sensors and Actuators A: Physical, 354, 114300. https://doi.org/10.1016/j.sna.2023.114300
  • [24] Yang K., Liu Y.-G., Wang Z., Li G.-Y., Han Y., Zhang H.-W., & Yu J. (2018). Five-wavelength-switchable all-fiber erbium-doped laser based on few-mode tilted fiber Bragg grating. Optics & Laser Technology, 108, 273-278. https://doi.org/10.1016/j.optlastec.2018.07.005
  • [25] Pollock, C. R., & Lipson, M. (2003). Photonic Crystals. In: Integrated Photonics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5522-0_13
  • [26] Lobry, M., Loyez, M., Debliquy, M., Chah, K., Goormaghtigh, E. & Caucheteur, Ch. (2023). Electroplasmonic-assisted biosensing of proteins and cells at the surface of optical fiber. Biosensors and Bioelectronics, 220, 114867. https://doi.org/10.1016/j.bios.2022.114867
Uwagi
1. This work is supported by grant from the Ministry of Science and higher Education of the Republic of Kazakhstan within the framework of the Project No. AP09259547 “Development of a system of distributed fiber-optic sensors based on fiber Bragg gratings for monitoring the state of building structures”, carried out by the Institute of Information and Computational Technologies CS MSHE RK.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bd15e31-9743-4a89-9018-d91547e22e53
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.