PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identifying three-dimensional palmprints with Modified Four-Patch Local Binary Pattern (MFPLBP)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Palmprint biometrics is the best method of identifying an individual with a unique palmprint for every person. The present paper formulates a new methodology towards the identification of 3D palmprints using the Modified Four-Patch Local Binary Pattern (MFPLBP). It improves upon the conventional Four-Patch Local Binary Pattern (FPLBP) by inte-grating the adaptive weight with the improved texture extraction. Both approaches are created to support the intricate surface information of 3D palmprints. The MFPLBP can exactly capture local variations and is noise and illumination invariant. There are extensive experiments done in this paper and establish that MFPLBP outperforms traditional LBP methods and other state-of-the-art methods in recognition rates. The experiments establish that MFPLBP is a efficient and effective method of making use of 3D palmprints in real-world biometric verification.
Twórcy
  • College of Engineering, Mustansiriyah University, Baghdad, Iraq
  • Technical Engineering College of Mosul, Northern Technical University, Iraq
  • Technical Engineering College of Mosul, Northern Technical University, Iraq
Bibliografia
  • [1] L. Zhang, Y. Shen, H. Li, and J. Lu, “3d palmprint identification using block-wise features and collaborative representation,” IEEE transactions on pattern analysis and machine intelligence, vol. 37, no. 8, pp. 1730-1736, 2014. [Online]. Available: https://doi.org/10.1109/TPAMI.2014.2372764
  • [2] X. Bai, N. Gao, Z. Zhang, and D. Zhang, “3d palmprint identification combining blocked st and pca,” Pattern Recognition Letters, vol. 100, pp. 89-95, 2017. [Online]. Available: https://doi.org/10.1016/j.patrec.2017.10.008
  • [3] L. Fei, B. Zhang, Y. Xu, W. Jia, J. Wen, and J. Wu, “Precision direction and compact surface type representation for 3d palmprint identification,” Pattern Recognition, vol. 87, pp. 237-247, 2019. [Online]. Available: https://doi.org/10.1016/j.patcog.2018.10.018
  • [4] D. Samai, K. Bensid, A. Meraoumia, A. Taleb-Ahmed, and M. Bedda, “2d and 3d palmprint recognition using deep learning method,” in 2018 3rd international conference on pattern analysis and intelligent systems (PAIS). IEEE, 2018, pp. 1-6. [Online]. Available: https://doi.org/10.1109/PAIS.2018.8598522
  • [5] D. Zhang, V. Kanhangad, N. Luo, and A. Kumar, “Robust palmprint verification using 2d and 3d features,” Pattern Recognition, vol. 43, no. 1, pp. 358-368, 2010. [Online]. Available: https://doi.org/10.1016/j.patcog.2009.04.026
  • [6] D. Zhang, G. Lu, W. Li, L. Zhang, and N. Luo, “Palmprint recognition using 3-d information,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 39, no. 5, pp. 505-519, 2009. [Online]. Available: https://doi.org/10.1109/TSMCC.2009.2020790
  • [7] D. Zhang, W.-K. Kong, J. You, and M. Wong, “Online palmprint identification,” IEEE Transactions on pattern analysis and machine intelligence, vol. 25, no. 9, pp. 1041-1050, 2003. [Online]. Available: https://doi.org/10.1109/TPAMI.2003.1227981
  • [8] A. Meraoumia, S. Chitroub, and A. Bouridane, “2d and 3d palmprint information and hidden markov model for improved identification performance,” in 2011 11th International Conference on Intelligent Systems Design and Applications. IEEE, 2011, pp. 648-653. [Online]. Available: https://doi.org/10.1109/ISDA.2011.6121729
  • [9] A. R. Rivera, J. R. Castillo, and O. O. Chae, “Local directional number pattern for face analysis: Face and expression recognition,” IEEE transactions on image processing, vol. 22, no. 5, pp. 1740-1752, 2012. [Online]. Available: https://doi.org/10.1109/TIP.2012.2235848
  • [10] S. Manjunatha, A. Guruprasad, and P. Vineesh, “Face analysis by local directional number pattern,” Int. J. Eng. Res. Gen. Sci, vol. 3, no. 1, pp.1400-1410, 2015.
  • [11] B. Vishnudharan and K. Anusudha, “A discriminative model for facial expression recognition using local directional number pattern,” in 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE, 2016, pp. 349-352. [Online]. Available: https://doi.org/10.1109/ICCICCT.2016.7987972
  • [12] R. R. Rose, A. Suruliandi, and K. Meena, “Local texture description framework-based modified local directional number pattern: a new descriptor for face recognition,” International Journal of Biometrics, vol. 7, no. 2, pp. 147-169, 2015. [Online]. Available: https://doi.org/10.1504/IJBM.2015.070928PDF
  • [13] A. Srikrishna, C. S. H. Priya, and P. A. Kiran, “Face recognition with varying facial expression using local directional number pattern,” in 2015 IEEE Power, Communication and Information Technology Conference (PCITC). IEEE, 2015, pp. 615-619. [Online]. Available: https://doi.org/10.1109/PCITC.2015.7438071
  • [14] G. G. S. Kumari, “A person and proclamation identification by using local directional number pattern.”
  • [15] R. R. O. Al-Nima, H. Maher, and N. T. Saeed, “Patterns identification of finger outer knuckles by utilizing local directional number,” International journal of electrical and computer engineering systems, vol. 14, no. 9, pp. 1059-1068, 2023. [Online]. Available: https://doi.org/10.32985/ijeces.14.9.10
  • [16] S. Arivazhagan, R. A. Priyadharshini, and S. Sowmiya, “Face recognition based on local directional number pattern and anfis classifier,” in 2014 IEEE International conference on advanced communications, control and computing technologies. IEEE, 2014, pp. 1627-1631. [Online]. Available: https://doi.org/10.1109/ICACCCT.2014.7019384
  • [17] L. Wolf, T. Hassner, and Y. Taigman, “Descriptor based methods in the wild,” in Workshop on faces in’real-life’images: Detection, alignment, and recognition, 2008.
  • [18] R. R. O. Al-Nima, “Signal processing and machine learning techniques for human verification based on finger textures,” Ph.D. dissertation, Newcastle University, 2017. [Online]. Available: http://hdl.handle.net/10443/3982
  • [19] R. R. O. Al-Nima, M. K. Jarjes, A. W. Kasim, and S. S. M. Sheet, “Human identification using local binary patterns for finger outer knuckle,” in 2020 IEEE 8th Conference on Systems, Process and Control (ICSPC). IEEE, 2020, pp. 7-12. [Online]. Available: https://doi.org/10.1109/ICSPC50992.2020.9305779
  • [20] A. Petpon and S. Srisuk, “Face recognition with local line binary pattern,” in 2009 Fifth International Conference on Image and Graphics. IEEE, 2009, pp. 533-539. [Online]. Available: https://doi.org/10.1109/ICIG.2009.123
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bcd7c42-fa89-4690-a08e-3249a2ffe240
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.