PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inverted Fuzzy Implications in Approximate Reasoning

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 1973 Lotfi Zadeh introduced the theory of fuzzy logic [17]. Fuzzy logic was an extension of Boolean logic so that it allowed using not only Boolean values to express reality. One kind of basic logical operations in fuzzy logic are so-called fuzzy implications. From over eight decades a number of different fuzzy implications have been described [3] - [16]. In the family of all fuzzy implications the partial order induced from [0,1] interval exists. Pairs of incomparable fuzzy implications can generate new fuzzy implications by usingmin(inf) andmax(sup) operations. As a result the structure of lattice is created ([1], page 186). This leads to the following question: how to choose the correct functions among basic fuzzy implications and other generated as described above. In our paper, we propose a new method for choosing implications. Our method allows to compare two fuzzy implications. If the truth value of the antecedent and the truth value of the implication are given, by means of inverse fuzzy implications we can easily optimize the truth value of the implication consequent. In other words, we can choose the fuzzy implication, which has the greatest or the smallest truth value of the implication consequent or which has greater or smaller truth value than another implication. Primary results regarding this problem are included in the paper [14].
Wydawca
Rocznik
Strony
151--171
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • Chair of Computer Science, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Prof. S. Pigonia Str. 1, 35-310 Rzeszów, Poland
autor
  • Chair of Computer Science, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Prof. S. Pigonia Str. 1, 35-310 Rzeszów, Poland
autor
  • Chair of Computer Science, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Prof. S. Pigonia Str. 1, 35-310 Rzeszów, Poland
Bibliografia
  • [1] Baczyński, M., Jayaram, B.: Fuzzy implications, Studies in Fuzziness and Soft Computing, Vol. 231, Springer, Berlin 2008
  • [2] Deng, G. , Jiang, Y.: Fuzzy reasoning method by optimizing the similarity of truth-tables, Information Sciences, Vol. 288, 20 December 2014, 290 - 313
  • [3] Dienes, Z.P.: On an implication function in many-valued systems of logic. J. Symb. Logic 14, 95-97 (1949)
  • [4] Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, Part 1: Inference with possibility distributions, Fuzzy Sets and Systems, Vol. 40, Issue 1, 1991, 143 - 202
  • [5] Dubois, D., Prade, H.: What are fuzzy rules and how to use them, Fuzzy Sets and Systems, Vol. 84, Issue 2, 1996, 169 - 185
  • [6] Fodor, J.C.: On contrapositive symmetry of implications in fuzzy logic. In: Proc. 1st European Congress on Fuzzy and Inteligent Technologies (EUFIT 1993), pp. 1342-1348. Verlag der Augustinus Buchhandlung, Aachen (1993)
  • [7] Gödel, K.: Zum intuitionistischen Aussagenkalkul. Auzeiger der Akademie der Wissenschaften in Wien, Mathematisch, naturwissenschaftliche Klasse 69, 65-66 (1932)
  • [8] Goguen, J.A.: The logic of inexact concepts. Synthese 19, 325-373 (1969)
  • [9] Kleene, S.C.: On a notation for ordinal numbers. J. Symb. Logic 3, 150-155 (1938)
  • [10] Łukasiewicz, J.: Interpretacja liczbowa teorii zda´n. Ruch Filozoficzny 7, 92-93 (1923)
  • [11] Papadopoulos, B., Trasanides, G., Hatzimichailidis, A.: Optimization Method for the Selection of the Appropriate Fuzzy Implication, Journal of Optimization Theory and Applications, 2007, Vol. 134, Issue 1, 135-141
  • [12] Reichenbach, H.: Wahrscheinlichkeitslogik. Erkenntnis 5, 37-43 (1935)
  • [13] Rescher, N.: Many-valued logic. McGraw-Hill, New York (1969)
  • [14] Suraj, Z. and Lasek, A.: Toward Optimization of Approximate Reasoning Based on Rule Knowledge. In: Proc. Int. Conference on Systems and Informatics, Nov. 15-17, 2014, Shanghai, China
  • [15] Weber, S.: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets and Systems 11, 115-134 (1983)
  • [16] Yager, R.R.: An approach to inference in approximate reasoning. Int. J. Man-Machine Studies 13, 323-338 (1980)
  • [17] Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese, APRIL/MAY 1975, Vol. 30, Issue 3-4, 407-428
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bc35b57-20db-4c36-b99e-b7d6ade4c768
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.