PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization Using Response Surface Methodology for Biodiesel Production by Double-Pipe Static Mixer Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates continuous biodiesel production from refined palm oil (RPO) using a 250-cm-length double-pipe static mixer (DPSM), mixing elements were employed first with the low-pressure drop static mixer (LPD-SM) and second with the Kenics Static Mixer (K-SM). Four key independent parameters in the transesterif ication reaction–methanol (MeOH) to RPO molar ratio, KOH concentration, static mixer length, and residence time – were optimized to achieve the desired methyl ester content (%E, wt.%), set at 96.5 wt.%. From response surface methodology (RSM), The optimal conditions of LPD-SM were MeOH to RPO molar ratio at 5:1, KOH concentration at 0.76 wt.% of RPO, 250 cm static mixer length, and 7.7 min residence time. Conversely, K-SM showed optimal conditions with MeOH to RPO molar ratio at 5.5:1, KOH concentration at 0.81 wt.% of RPO, 250 cm static mixer length, and 7.2 min residence time. Statistical analysis revealed KOH concentration as the most influential parameter, followed by residence time, static mixer length, and MeOH to RPO molar ratio, respectively. In summary, LPD-SM outperformed K-SM in reducing the amount of alcohol and catalyst consumption while maintaining %E at the set point, highlighting its potential as an efficient, sustainable approach for biodiesel production from RPO using a DPSM.
Rocznik
Strony
142--157
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, Faculty of Engineering, Prince of Songkhla University, Hat Yai, Songkhla 90110, Thailand
  • Department of Chemical Engineering, Faculty of Engineering, Prince of Songkhla University, Hat Yai, Songkhla 90110, Thailand
  • Department of Chemical Engineering, Faculty of Engineering, Prince of Songkhla University, Hat Yai, Songkhla 90110, Thailand
Bibliografia
  • 1. Kabeyi, M.J.B., Olanrewaju O. 2022. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Frontiers in Energy Research, 9, 743114.
  • 2. Arshad, S., Ahmad M., Munir M., Sultana S., Zafar M., Dawood S., Rozina., Alghamdi A.M., Asif S., Bokhari A., Mubashir M., Chuah L.F., Show P.L. 2023. Assessing the potential of green CdO2 nanocatalyst for the synthesis of biodiesel using non-edible seed oil of Malabar Ebony. Fuel, 333, 126492.
  • 3. Ergen, G. 2024. Comprehensive analysis of the effects of alternative fuels on diesel engine performance combustion and exhaust emissions: Role of biodiesel, diethyl ether, and EGR, 47, 102307.
  • 4. Gómez-Castro, F.I., Gutiérrez-Antonio C., RomeroIzquierdo A.G., May-Vázquez M.M., Hernández S. 2023. Intensified technologies for the production of triglyceride-based biofuels: Current status and future trends. Renewable and Sustainable Energy Reviews, 184, 113580.
  • 5. Masera, K., Hossain A.K. 2023. Advancement of biodiesel fuel quality and NOx emission control technique. Renewable and Sustainable Energy Reviews, 178, 113235.
  • 6. Rocha-Meneses, L., Hari A., Inayat A., Yousef L.A., Alarab S., Abdallah M., Shanableh A., Ghenai C., Shanmugam S., Kikas T. 2023. Recent advances on biodiesel production from waste cooking oil (WCO): A review of reactors, catalysts, and optimization techniques impacting the production. Fuel, 348, 128514.
  • 7. Zaher, F.A., Soliman H.M. 2015. Biodiesel production by direct esterification of fatty acids with propyl and butyl alcohols. Egyptian Journal of Petroleum, 24(4), 439-443.
  • 8. Tabatabaei, M., Aghbashlo M., Dehhaghi M., Panahi H.K.S., Mollahosseini A., Hosseini M., Soufiyan M.M. 2019. Reactor technologies for biodiesel production and processing: A review. Progress in Energy and Combustion Science, 74, 239–303.
  • 9. Abusweireh, R.S., Rajamohan N., Vasseghian Y. 2022. Enhanced production of biodiesel using nanomaterials: A detailed review on the mechanism and influencing factors. Fuel, 319, 123862.
  • 10. Lin, C.Y., Wu X.E. 2022. Determination of cetane number from fatty acid compositions and structures of biodiesel. Processes, 10(8), 1502.
  • 11. Mehdaoui, I., Majbar Z., Hassani E.M.S., Mahmoud R., Atemni I., Abbou M.B., Taleb M., Rais Z. 2023. Energy valorization of olive mill waste cake-extraction of vegetable oil and transesterification. Journal of Ecological Engineering, 24(5), 306-315.
  • 12. Jalaluddin, J., Ginting Z., Maliki S., Setiawan A., Zulfa Z. 2022. Biodiesel production from crude palm oil using kapok skin KOH (Ceiba Pentandra) catalyst as solid green catalyst. Journal of Ecological Engineering, 23(5), 286-292.
  • 13. Chanakaewsomboon, I., Moollakorn A. 2021. Soap formation in biodiesel production: effect of water content on saponification reaction. International Journal of Chemical and Environmental Sciences, 2(2), 28–36.
  • 14. Takase, M., Bryant I.M., Essandoh P.K., Amankwa A.E.K. 2023. A comparative study on performance of KOH and 32%KOH/ZrO2-7 catalysts for biodiesel via transesterification of waste Adansonia digitata oil. Green Technologies and Sustainability, 1(3), 100004.
  • 15. Reynoso, A.J., Ayastuy J.L., Iriarte-Velasco U., Gutiérrez-Ortiz M.A. 2023. Bio-hydrogen and valuable chemicals from industrial waste glycerol via catalytic aqueous-phase transformation. Fuel Processing Technology, 242, 107634.
  • 16. de Oliveira, V.F., Parente E.J.S., Manrique-Rueda E.D., Cavalcante C.L., Luna F.M.T. 2020. Fatty acid alkyl esters obtained from babassu oil using C1–C8 alcohols and process integration into a typical biodiesel plant. Chemical Engineering Research and Design, 160, 224–232.
  • 17. Nogales-Delgado, S., Encinar J.M., González Cortés Á. 2021. High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production. Industrial Crops and Products, 170, 113701.
  • 18. Šánek, L., Pecha J., Husár J., Kolomazník K. 2019. Mathematical modeling of transesterification process kinetics of triglycerides catalyzed by TMAH. MATEC Web of Conferences, 292, 01027.
  • 19. Zahan, K.A., Kano M. 2019. Technological progress in biodiesel production: An overview on different types of reactors. Energy Procedia, 156, 452–457.
  • 20. Pongraktham, K., Somnuk K. 2020. Continuous methyl ester production process from refined palm oil using 3D-printed static mixers. Materials Science Forum, 998, 134–139.
  • 21. Noureddini, H., Harkey D., Medikonduru A. 1998, A continuous process for the conversion of vegetable oils into methyl esters of fatty acids. Journal of the American Oil Chemists’ Society, 75, 1775-1783.
  • 22. Darnoko, D., Cheryan M., 2000. Continuous production of palm methyl esters. Journal of the American Oil Chemists’ Society, 77, 1269-1272.
  • 23. Qiu, Z., Zhao L., Weatherley L. 2010. Process intensification technologies in continuous biodiesel production. Chemical Engineering and Processing - Process Intensification, 49(4), 323-330.
  • 24. Sungwornpatansakul, P., Hiroi J., Nigahara Y., Jayasinghe T.K., Yoshikawa K. 2013. Enhancement of biodiesel production reaction employing the static mixing. Fuel Processing Technology, 116, 1–8.
  • 25. Kolmetz, K., Jaya A. 2014. Static mixer selection, sizing and troubleshooting. KLM technology group, Johor Bahru, Malaysia.
  • 26. Jiang, X., Xiao Z., Jiang J., Yang X., Wang R. 2021. Effect of element thickness on the pressure drop in the Kenics Static Mixer. Chemical Engineering Journal, 424, 130399.
  • 27. Somnuk, K., Wijitsopa K., Prateepchaikul G. 2016. Optimization of the comparative continuous process of ethyl and methyl ester productions using a static mixer reactor: a response surface methodology approach. Biofuels, 9, 331–339.
  • 28. Pongraktham, K., Somnuk K. 2020. Effect of lengthto-diameter ratio of mixing elements for methyl ester production process. Academic Journal Uttaradit Rajabhat University [Online serial], Retrieved December 5, 2023 https://ph01.tcithaijo.org/index. php/uruj/article/download/239984/163976/831583
  • 29. Stec, M., Synowiec P.M. 2015. Analysis of the pressure drop calculation method impact on the accuracy of the experimental results in the Koflo static mixer. Chemical Engineering and Equipment, 54(4), 201-203.
  • 30. Trejo-Zárraga, F., Hernández-Loyo F.D.J, Chavarría-Hernández J.C., Sotelo-Boyás R. 2018. Kinetics of transesterification processes for biodiesel production. In K. Biernat, ed. Biofuels - State of Development. InTech, 149-179.
  • 31. Berkman, P.D., Calabrese R.V. 1988. Dispersion of viscous liquids by turbulent flow in a static mixer. AIChE Journal, 34, 602–609.
  • 32. Meng, H., Meng T., Yu Y., Wang Z., Wu J. 2022. Experimental and numerical investigation of turbulent f low and heat transfer characteristics in the Komax static mixer. International Journal of Heat and Mass Transfer, 194, 123006.
  • 33. Juera-ong, P., 2023. Continuous biodiesel production from palm oil mill effluent using hydrodynamic cavitation reactor. M. Eng. Thesis, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
  • 34. Hazrat, M.A., Rasul M.G., Khan M.M.K., Ashwath N., Silitonga A.S., Fattah I.M.R., Mahlia T.M.I. 2022. Kinetic modelling of esterification and transesterification processes for biodiesel production utilising waste-based resource. Catalysts, 12, 12111472.
  • 35. Kanjaikaew, U., Tongurai C., Chongkhong S., Prasertsit K. 2018. Two-step esterification of palm fatty acid distillate in ethyl ester production: Optimization and sensitivity analysis. Renewable Energy, 119, 336–344.
  • 36. Khiowthong, W., Thaiyasuit P. 2023. Continuous ethyl ester production in a high-performance rotor reactor at 3:1 molar ratio using response surface methodology. International Energy Journal, 23, 173–186.
  • 37. Abdallah, R.I., Samy B.E.H., Sherif A., Mohamed A.B., Salem S.A.A., Nour S.E.G., Mohamed S.A., Nagwa M.S. 2017. Optimization of a batch CaOcatalyzed transesterification of used domestic waste oil with methanol and elucidation of a mathematical correlation between biodiesel yield and percent conversion. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 7230.
  • 38. Agarwal, M., Chauhan G., Chaurasia S.P., Singh K. 2012. Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 43, 89–94.
  • 39. Mohammadi, N., Ostovar N., Niromand R., Absalan F. 2023. Advancing biodiesel production from Pyrus glabra seed oil: Kinetic study and RSM optimization via microwave-assisted transesterification with biocompatible hydroxyapatite catalyst. Sustainable Chemistry and Pharmacy, 36, 101272.
  • 40. Chanakaewsomboon, I., Phoungthong K., Palamanit A., Seechamnanturakit V., Cheng C.K. 2021. Biodiesel produced using potassium methoxide homogeneous alkaline catalyst: effects of various factors on soap formation. Biomass Conversion and Biorefinery, 13(10), 1–11.
  • 41. Sharma, Y.C., Singh B., Korstad J. 2010. High yield and conversion of biodiesel from a nonedible feedstock (Pongamia pinnata). Journal of Agricultural and Food Chemistry, 58, 242-247.
  • 42. Nikhom, R., Tongurai C. 2014. Production development of ethyl ester biodiesel from palm oil using a continuous deglycerolisation process. Fuel, 117b, 926-931.
  • 43. Thipdech, A., Prasertsit K., Photaworn S. 2024. Process intensification of biodiesel production using pilot-scale continuous multiple baffle reactor with feed distribution. Chemical Engineering and Processing-Process Intensification, 195, 109614.
  • 44. Thompson, J.C., He B.B. 2007. Biodiesel production using static mixers. Transactions of the American Society of Agricultural and Biological Engineers, 50, 161–165.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bbe0c3b-31fd-4653-898e-eb50a9383d8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.