Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims to determine the behaviour of iron and its relation to the physicochemical properties in the hydromorphic soils of the Tadla plain (Morocco). An extensive analysis using Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) from a statistical perspective was employed to ensure a comprehensive examination. The results reveal that the organic matter (OM) shows very high values, likely due to the collected samples near the sewerage network. Magnetic susceptibility (MS) measurements indicate that all the samples have positive and low values, indicating an abundance of paramagnetic minerals (such as ilmenite, siderite, and clay minerals). The iron concentration [ppm] increases from the top to the bottom of the Rivers, suggesting migration in a reduced form. Pearson’s correlation coefficients indicate that OM is positively correlated with cation exchange capacity (CEC) (r = 0.83) and electrical conductivity (EC) (r = 0.85) but negatively correlated with MS (r = –0.57) and iron oxide (r = 0.42). Calcium carbonate content (CaCO3) is positively correlated with sand (r = 0.49), but negatively with MS (r = –0.7). Iron (Fe) is positively correlated with frequency-dependent (FD) (r = 0.7), but negatively with sand (r = –0.608). Clay is strongly negatively correlated with silt (r = –0.88) and oxalate extractable iron oxides (Feo) (r = –0.55), respectively. These findings suggest that the physicochemical features of Beni Moussa hydromorphic soils are strongly linked and that iron in the soil is required for the stability of specific soil components.
Czasopismo
Rocznik
Tom
Strony
365--383
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
- Geomatics, Georesources and Environment Laboratory, Faculty of Sciences et Techniques, Sultan Moulay Slimane University, Béni Mellal, Morocco
autor
- Geomatics, Georesources and Environment Laboratory, Faculty of Sciences et Techniques, Sultan Moulay Slimane University, Béni Mellal, Morocco
autor
- Geomatics, Georesources and Environment Laboratory, Faculty of Sciences et Techniques, Sultan Moulay Slimane University, Béni Mellal, Morocco
autor
- Geomatics, Georesources and Environment Laboratory, Faculty of Sciences et Techniques, Sultan Moulay Slimane University, Béni Mellal, Morocco
autor
- National Institute of Agronomic Research, CRRA Tadla, Morocco
Bibliografia
- [1] Nawaz MF, Bourrie G, Gul S. Factors affecting redox reactions in hydromorphic soils. A review. Pak J Agric Sci. 2014;51. Available from: https://urls.fr/gji_Ij.
- [2] Lindsay WL. Iron oxide solubilization by organic matter and its effect on iron availability. Plant Soil. 1991;130:27-34. DOI: 10.1007/BF00011852.
- [3] Kolasa-Wiecek A. Use of artificial neural networks in predicting direct nitrous oxide emissions from agricultural soils. Ecol Chem Eng S. 2013;20:419-28. DOI: 10.2478/eces-2013-0030.
- [4] Różański S. Fractionation of selected heavy metals in agricultural soils. Ecol Chem Eng S. 2013;20:117-25. DOI: 10.2478/eces-2013-0009.
- [5] Azzouzi L, El Aggadi S, Ennouhi M, Ennouari A, Fadil I, Zrineh A. Thiabendazole fungicide adsorption onto four agricultural soils collected from the Loukkos Area of Northwestern Morocco. Ecol Chem Eng S. 2022;29:217-26. DOI: 10.2478/eces-2022-0016.
- [6] El Hamzaoui EH, El Baghdadi M, Oumenskou H, Aadraoui M, Hilali A. Spatial repartition and contamination assessment of heavy metal in agricultural soils of Beni-Moussa, Tadla plain (Morocco). Model Earth Syst Environ. 2020;6:1387-406. DOI: 10.1007/s40808-020-00756-3.
- [7] Shokr MS, Baroudy AAE, Fullen MA, El-Beshbeshy TR, Ali RR, Elhalim A, et al. Mapping of heavy metal contamination in alluvial soils of the middle Nile delta of Egypt. J Environ Eng Landsc Manage. 2016;24:218-31. DOI: 10.3846/16486897.2016.1184152.
- [8] Şener E, Şener Ş, Varol S. Evaluation of irrigation water quality using GIS-based analytic hierarchy process (AHP) in Kızılırmak Delta (Turkey). Arab J Geosci. 2022;15:678. DOI: 10.1007/s12517-022-10003-x.
- [9] Massoni C, Missante G, Beaudet G, Combes M, Etienne HP, Ionesco T. The Tadla Plain. Cah Rech Agron. 1967;24:163-94. Available from: https://urls.fr/ImsuDn.
- [10] Oumenskou H, Baghdadi ME, Barakat A, Aquit M, Ennaji W, Karroum LA, et al. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geol Ecol Landsc. 2018;3:83-94. DOI: 10.1080/24749508.2018.1504272.
- [11] Antonkiewicz J, Kuc A, Witkowicz R, Tabak M. Effect of municipal sewage sludge on soil chemical properties and chemical composition of spring wheat. Ecol Chem Eng S. 2019;26:583-95. DOI: 10.1515/eces-2019-0043.
- [12] Pająk M, Błońska E, Szostak M, Gąsiorek M, Pietrzykowski M, Urban O, et al. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air Soil Pollut. 2018;229:1-15. DOI: 10.1007/s11270-018-4040-6.
- [13] El Hamzaoui EH, El Baghdadi M, Hilali A. GIS and AHP multi-criteria analysis method for assessing the suitability of soils adopted in agricultural activities in irrigated perimeter, Tadla plain (Morocco). J Sediment Environ. 2021;6. DOI: 10.1007/s43217-020-00048-x.
- [14] Nadem S, El-Baghdadi M, Rais J, Barakat A. Evaluation of heavy metal contamination of sediments of the estuary of the Bouregreg (Atlantic Coast, Morocco). J Mater Environ Sci. 2015;6:3338-45. Available from: https://urls.fr/lecV9G.
- [15] Ennaji W, Barakat A, El Baghdadi M, Oumenskou H, Aadraoui M, Karroum LA, et al. GIS-based multi-criteria land suitability analysis for sustainable agriculture in the northeast area of Tadla plain (Morocco). J Earth Syst Sci. 2018;127:1-14. DOI: 10.1007/s12040-018-0980-x.
- [16] Oumenskou H, Baghdadi ME, Barakat A, Aquit M, Ennaji W, Karroum LA, et al. Assessment of the heavy metal contamination using GIS-based approach and pollution indices in agricultural soils from Beni Amir irrigated perimeter, Tadla plain, Morocco. Arab J Geosci. 2018;11:692. DOI: 10.1007/s12517-018-4021-5.
- [17] Chaaou A, Chikhaoui M, Naimi M, Miad AKE, Achemrk A. Mapping of soil salinity risk using index-based approaches and multi-source data: Case of the Tadla Plain, Morocco. Eur Sci J ESJ. 2020;16:206-25. DOI: 10.19044/esj.2020.v16n33p206.
- [18] Moutia S, Sinan M, Lekhlif B. Assessment of agricultural drought in Morocco based on a composite of the Vegetation Health Index (VHI) and Standardized Precipitation Evapotranspiration Index (SPEI). E3S Web of Conferences, vol. 314, EDP Sciences; 2021. DOI: 10.1051/e3sconf/202131404003.
- [19] Grillot G, Jaminet R. Etude des sols du périmètre irrigable des Beni Amir-Beni Moussa 1953. Available from: www.sudoc.fr/024431362.
- [20] Abdessamad N, Jaffal M, el Khammari K, Aïfa T, Khattach D, Himi M, et al. Contribution of gravimetry to the study of the structure of the Tadla Basin (Morocco): Hydrogeological implications. Comptes Rendus Geosci - C R GEOSCI. 2006;338:676-82. DOI: 10.1016/j.crte.2006.04.015.
- [21] Kumar A, Dua A. Water quality index for assessment of water quality of river ravi at Madhopur (India). Glob J Environ Sci. 2010;8. DOI: 10.4314/gjes.v8i1.50824.
- [22] Nwankwoala HO, Warmate T. Geotechnical assessment of foundation conditions of a site in Ubima, Ikwerre local government area, Rivers State, Nigeria. Int J Eng Res Dev IJERD. 2014;9:50-63. Available from: https://urls.fr/q2ea_p.
- [23] Simeonova P, Simeonov V, Andreev G. Water quality study of the Struma river basin, Bulgaria (1989-1998). Open Chem. 2003;1:121-36. DOI: 10.2478/BF02479264.
- [24] Alberto WD, del Pilar DM, Valeria AM, Fabiana PS, Cecilia HA, de Los Ángeles BM. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. a case study: Suquı́a River Basin (Córdoba-Argentina). Water Res. 2001;35:2881-94. DOI: 10.1016/S0043-1354(00)00592-3.
- [25] Srivastava SK, Ramanathan AL. Geochemical assessment of groundwater quality in vicinity of Bhalswa landfill, Delhi, India, using graphical and multivariate statistical methods. Environ Geol. 2007;53:1509-28. DOI: 10.1007/s00254-007-0762-2.
- [26] Mahlknecht J, Steinich B, Navarro de Len I. Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Environ Geol. 2004;45:781-95. DOI: 10.1007/s00254-003-0938-3.
- [27] Shrestha S, Kazama F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ Model Softw. 2007;22:464-75. DOI: 10.1016/j.envsoft.2006.02.001.
- [28] McKenna J. An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis. Environ Model Softw. 2003;18:205-20. DOI: 10.1016/S1364-8152(02)00094-4.
- [29] Singh KP, Malik A, Mohan D, Sinha S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) - a case study. Water Res. 2004;38:3980-92. DOI: 10.1016/j.watres.2004.06.011.
- [30] Oldfield EE, Bradford MA, Augarten AJ, Cooley ET, Radatz AM, Radatz T, et al. Positive associations of soil organic matter and crop yields across a regional network of working farms. Soil Sci Soc Am J. 2022;86:384-97. DOI: 10.1002/saj2.20349.
- [31] Likhanova IA, Deneva SV, Kholopov YV, Kuznetsova EG, Shakhtarova OV, Lapteva EM. The effect of hydromorphism on soils and soil organic matter during the primary succession processes of forest vegetation on ancient alluvial sands of the European North-East of Russia. Forests. 2022;13:230. DOI: 10.3390/f13020230.
- [32] Jaremko D, Kalembasa D. A comparison of methods for the determination of cation exchange capacity of soils (Porównanie metod oznaczania pojemności wymiany kationów i sumy kationów wymiennych w glebach). Ecol Chem Eng S. 2014;21:487-98. DOI: 10.2478/eces-2014-0036.
- [33] Guibert H. Kinetics of soil organic matter particle size and consequences for the cation exchange capacity of alfisols. WCSS; 2002. DOI: 10.1180/0009855043910117.
- [34] Oorts K, Vanlauwe B, Merckx R. Cation exchange capacities of soil organic matter fractions in a ferric lixisol with different organic matter inputs. Agric Ecosyst Environ. 2003;100:161-71. DOI: 10.1016/S0167-8809(03)00190-7.
- [35] Charpentiera D, Devineau K, Mosser-Ruck R, Cathelineau M, Villiéras F. Bentonite-iron interactions under alkaline condition: An experimental approach. Appl Clay Sci. 2006;32:1-13. DOI: 10.1016/j.clay.2006.01.006.
- [36] Guillaume D, Neaman A, Athelineau M, Mosser-Ruck R, Peiffert C, Abdelmoula M, et al. Experimental study of the transformation of smectite at 80 and 300 °C in the presence of Fe oxides. Clay Miner. 2004;39:17-34. DOI: 10.1180/0009855043910117.
- [37] Smith JL, Doran JW. Measurement and use of pH and electrical conductivity for soil quality analysis. Methods Assess Soil Qual. 1997;49:169-85. DOI: 10.2136/sssaspecpub49.c10.
- [38] Blume HP, Schwertmann U. Genetic evaluation of profile distribution of aluminum, iron, and manganese oxides. Soil Sci Soc Am J. 1969;33:438-44. DOI: 10.2136/sssaj1969.03615995003300030030x.
- [39] Büyükkılıç T, Seyrek A, Yanardağ A, Yanardağ İ, Mermut A, Cano A. Total iron and different iron forms contents affecting by soil characteristics in vertisols, SE Turkey. 2022. DOI: 10.21203/rs.3.rs-2174390/v1.
- [40] Lamouroux M, Loyer JY, Bouleau A, Janot C. Forms of Iron in Red and Brown Fersiallitic Soils. Application of Mössbauer Spectroscopy. Cah ORSTOM S6r P6-Dol. 1977;15:199-210. Available from: www.documentation.ird.fr/hor/fdi:18581.
- [41] Schwertmann U, Cornell RM. Iron oxides in the laboratory: preparation and characterization. 2000. Second, completely revised and extended edition. Weinheim [Germany]; DOI: 10.1002/9783527613229.
- [42] Lamouroux M, Ségalen P. Comparative study of ferruginous products in red and brown Mediterranean soils of Lebanon. Sci Sol. 1969;1:63-75. Available from: www.documentation.ird.fr/hor/fdi:13302.
- [43] Djerrab A, Hedley I. Study of magnetic minerals from the prehistoric site of the Caverna delle Fate (Finale, Liguria, Savona, Italy). Quat Rev Assoc Fr Pour Létude Quat. 2010;21:165-80. DOI: 10.4000/quaternaire.5534.
- [44] Maher BA. Characterisation of soils by mineral magnetic measurements. Phys Earth Planet Inter. 1986;42:76-92. DOI: 10.1016/S0031-9201(86)80010-3.
- [45] Maher BA, Taylor RM. Formation of ultrafine-grained magnetite in soils. Nature. 1988;336:368-70. DOI: 10.1038/336368a0.
- [46] Lecoanet H, Lévêque F, Ambrosi JP. Magnetic properties of salt-marsh soils contaminated by iron industry emissions (southeast France). J Appl Geophys. 2001;48:67-81. DOI: 10.1016/S0926-9851(01)00080-5.
- [47] Mendis BRC, Najim MMM, Kithsiri HMP, Udayanga L. The spatial variation of Mugil cephalus in the Negombo Estuary in relation to physico-chemical parameters. Colombo J Multi-Discip Res. 2020;5:41. DOI: 10.4038/cjmr.v5i1-2.54.
- [48] Hu C, Wright A, Lian G. Estimating the spatial distribution of soil properties using environmental variables at a catchment scale in the Loess Hilly Area, China. Int J Environ Res Public Health. 2019;16:491. DOI: 10.3390/ijerph16030491.
- [49] Morton-Bermea O, Hernandez E, Martinez-Pichardo E, Soler-Arechalde AM, Santa-Cruz RL, Gonzalez-Hernandez G, et al. Mexico City topsoils: Heavy metals vs. magnetic susceptibility. Geoderma. 2009;151:121-5. DOI: 10.1016/j.geoderma.2009.03.019.
- [50] Wang XS, Qin Y. Correlation between magnetic susceptibility and heavy metals in urban topsoil: a case study from the city of Xuzhou, China. Environ Geol. 2005;49:10-8. DOI: 10.1007/s00254-005-0015-1.
- [51] Yang T, Liu Q, Zeng Q, Chan L. Relationship between magnetic properties and heavy metals of urban soils with different soil types and environmental settings: implications for magnetic mapping. Environ Earth Sci. 2012;66:409-20. DOI: 10.1007/s12665-011-1248-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3bb45e72-c238-4598-b44f-c02bd1da3b0a