PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation with modeling and theoretical predictions of mechanical properties of functionally graded polyethylene/clay nanocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents preparation with modeling and theoretical predictions of mechanical properties of compatibilized functionally graded and uniform distribution polyethylene/modified montmorillonite nanocomposites manufactured by solution and melt mixing techniques. The morphology is studied by Scanning Electron Microscopy (SEM) and comparisons are made between two techniques. Young’s modulus of nanocomposites for functionally graded and uniform distributions is calculated using a genetic algorithm and is then compared with the results of other theoretical prediction models mentioned in the literature as well as experimental results. It is found that the melt mixing technique is the preferred preparation method, and the results obtained from the theoretical predictions of genetic algorithm procedure are in good agreement with the experimental ones.
Rocznik
Strony
583—593
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Razi University, Kermanshah, Iran
  • Department of Mechanical Engineering, Razi University, Kermanshah, Iran
Bibliografia
  • 1. Avila A.F., Donadon L.V., Duarte H.V., 2008, A modal analysis of nanoclay-epoxy-fiber glass composite, Composite and Structure, 83, 324-333
  • 2. Avila A.F., Duarte H.V., Soares M.I., 2006, The nanoclay influence on impact response of laminate plates, American Journal of Solids and Structures, 37, 3-20
  • 3. Awaji H., Nishimura Y., Choi S., Takahashi Y., Goto T., Hashimoto S., 2009, Toughening mechanism and frontal process zone size of ceramics, Journal of the Ceramic Society of Japan, 117, 623-629
  • 4. Brown D., Mele P., Marceau S., 2003, A molecular dynamics study of a model nanoparticle embedded in a polymer matrix, Macromolecules, 36, 1395-1406
  • 5. Chen L., Chen G., 2009, Relaxation behavior study of silicone rubber crosslinked network under static and dynamic compression by electric response, Polymer Composites, 30, 101-106
  • 6. Chen X.L., Liu Y.J., 2004, Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites, Computational Materials Science, 29, 1-11
  • 7. Dong Y., Bhattacharyya D., Hunter P.J., 2008, Experiental characterisation and objectoriented finite element modeling of polypropylene/organoclay nanocomposites, Composite Science Technology, 68, 2864-2875
  • 8. Einstein A., 1956, Investigation on Theory of Brownian Motion, New York, Dover
  • 9. Eshelby J.D., 1961, Elastic inclusions and inhomogeneities, Progress in Solid Mechanics, 2, 89-140
  • 10. Fornes T.D., Paul D.R., 2003, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer, 44, 4993-5013
  • 11. Grigoriadi K., Giannakas A., Ladavos A., 2012, Thermomechanical behavior of polymer/layered silicate clay nanocomposites based on unmodified low density polyethylene, Polymer Engineering Science, 51, 301-308
  • 12. Guth E., 1945, Theory of filler reinforcement, Journal of Applied Physics, 16, 20-25
  • 13. Han Y., Wang Z., Li X., Fu J., Cheng Z., 2001, Polymer-layered silicate nanocomposites: synthesis, characterization, properties and applications, Current Trends in Polymer Science, 6, 1-16
  • 14. Haque A., Shamsuzzoha M., 2003, S2-glass/epoxy polymer nanocomposites manufacturing, structures, thermal and mechanical properties, Journal of Composite Materials, 37, 1821-1837
  • 15. Holland J.H., 1975, Adaptation in Natural and Artificial Systems, University of Michigan press, Ann Arbor
  • 16. Hotta S., Paul D.R., 2004, Nanocomposites formed from linear low density polyethylene and organoclays, Polymer, 45, 7639-7654
  • 17. Hrachova J., Komadel P., Moskova D.J., 2013, Properties of organo-clay/natural rubber nanocomposites, Journal of Apply Polymer Science, 127, 3447-3455
  • 18. Isik I., Yilmazer U., Bayram G., 2003, Impact modified epoxy/montmorillonite nanocomposites, synthesis and characterization, Polymer, 44, 6371-6377
  • 19. Kawasumi M., Hasegawa N., Kato M., Usuki A., Okada A., 1997, Preparation and mechanical properties of polypropylene-clay hybrids, Macromolecules, 30, 6333-6338
  • 20. Kim P.N., Doss M., Tillotson J.P., 2009, High energy density nanocomposites based on surface-modiied BaTiO3 and a ferroelectric polymer, ACS Nano, 3, 2581-2592
  • 21. Kornmann X., Lindberg H., Berglund L.A., 2001, Synthesis of epoxy-clay nanocomposites: inluence of the nature of the clay on structure, Polymer, 42, 1303-1310
  • 22. Liu Y.J., Chen X.L., 2003, Evaluations of the effective material properties of carbon nanotubebased composites using a nanoscale representative volume element, Mechanics of Materials, 35, 69-81
  • 23. Nam P.H., Maiti P., Okamoto M., 2001, Hierarchical structure and properties of intercalated polypropylene/clay nanocomposite, Polymer, 42, 9633-9640
  • 24. Pakdaman A.S., Morshedian J., Jahani Y., 2013, Effect of organoclay and silane grafting of polyethylene on morphology, barrierity, and rheological properties of HDPE/PA6 blends, Journal of Apply Polymer Science, 127, 1211-1220
  • 25. Shen H.S., 2009, Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments, Composite Structures, 91, 9-19
  • 26. Shen H.S., 2011, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part I: Axially-loaded shells, Composite Structures, 93, 2096-2108
  • 27. Shen H.S., Xiang Y., 2012, Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments, Computer Methods in Applied Mechanics and Engineering, 213, 196-205
  • 28. Sheng N., Boyce M.C., Parks D.M., Rutledge G.C., Abes J.I., Cohen R.E., 2004, Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, 45, 487-506
  • 29. Smith G.D., Bedrov D., Li L., 2002, A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites, Journal of Chemical Physics, 117, 9478-9489
  • 30. Song S.Y., Youn J.R., 2006, Modelling of effective elastic properties of polymer based carbon nanotube composites, Polymer, 47, 1741-1748
  • 31. Tan H., Yang W., 1998, Toughening mechanisms of nano-composite ceramics, Mechanics of Materials, 30, 111-123
  • 32. Tandon G.P., Weng G.J., 1984, The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites, Polymer Composites, 5, 327-333
  • 33. Taya M., 1981, On stiffness and strength of an aligned short-fiber reinforced composite containing penny- shaped cracks in the matrix, Journal of Composite Materials, 15, 198-210
  • 34. Taya M., Mura T., 1981, On stiffness and strength of an aligned short-fiber reinforced composite containing fiber-end cracks under uni-axial applied stress, ASME Journal of Applied Mechanics, 48, 361-367
  • 35. Thilly L., Petegem S.V., Renault P.O., 2009, A new criterion for elastio-plastic transition in nanomaterials. Application to size and composite effects on Cu-Nb nanocomposite wires, Acta Materialia, 57, 3157-3169
  • 36. Utracki L.A., Kamal M.R., 2002, Clay-containing polymeric nanocomposites, Arabian Journal for Science and Engineering, 27, 43-67
  • 37. Yaghoobi H., Fereidoon A., 2010, Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load, World Applied Sceince Journal, 10, 337-341
  • 38. Zhao K., He K., 2006, Dielectric relaxation of suspensions of nanoscale particles surrounded by a thick electric double layer, Physical Review B, 74, 1-10
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ba9681b-ce4a-4dac-95a6-f6fa410f46b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.