PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synthesis and Characterization of Antimony Telluride for Thermoelectric and Optoelectronic Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Antimony telluride (Sb2 Te3 ) is an intermetallic compound crystallizing in a hexagonal lattice with R-3m space group. It creates a c lose packed structure of an ABCABC type. As intrinsic semiconductor characterized by excellent electrical properties, Sb2 Te3 is widely used as a low-temperature thermoelectric material. At the same time, due to unusual properties (strictly connected with the structure), antimony telluride exhibits nonlinear optical properties, including saturable absorption. Nanostructurization, elemental doping and possibilities of synthesis Sb2 Te3 in various forms (polycrystalline, single crystal or thin film) are the most promising methods for improving thermoelectric properties of Sb2Te3.Applications of Sb2 Te3 in optical devices (e.g. nonlinear modulator, in particular saturable absorbers for ultrafast lasers) are also interesting. The antimony telluride in form of bulk polycrystals and layers for thermoelectric and optoelectronic applications respectively were used. For optical applications thin layers of the material were formed and studied. Synthesis and structural characterization of Sb2 Te3 were also presented here. The anisotropy (packed structure) and its influence on thermoelectric properties have been performed. Furthermore, preparation and characterization of Sb2 Te3 thin films for optical uses have been also made.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska, Warsaw 02-507, Poland
autor
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Wroclaw University of Science and Technology, Faculty of Electronics, Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Faculty of Electronics, Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Faculty of Electronics, Wroclaw, Poland
autor
  • Institute of Electronic Materials Technology, Warsaw, Poland
autor
  • Institute of Electronic Materials Technology, Warsaw, Poland
  • Institute of Electronic Materials Technology, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Woloska, Warsaw 02-507, Poland
autor
  • Institute of Electronic Materials Technology, Warsaw, Poland
Bibliografia
  • [1] D.M. Rowe ed.: CRC Handbook of Thermoelectrics, Ch 3 (CRC Press, 1995).
  • [2] R. Zybała, M. Schmidt, K. Kaszyca et al., J. Electron. Mater. 45 (10), 5223-5231 (2016).
  • [3] R. Zybala, K.T. Wojciechowski, AIP Conf. Proc. 1449, 393 (2012) doi: 10.1063/1.4731579.
  • [4] M.J. Kruszewski, R. Zybala, L. Ciupinski, et al., J. Electron. Mater. 45 (3), 1369 (2016).
  • [5] P. Nieroda, R. Zybala, K.T. Wojciechowski, AIP Conf. Proc. 1449, 199 (2012), doi: 10.1063/1.4731531.
  • [6] H. Zhang, C.X. Liu, X.L. Qi, et al., Nat. Phys. 5 (6), 438-442 (2009).
  • [7] J. Liu, S. Liu, J. Wei, Appl. Phys. Lett. 97, 261903 (2010).
  • [8] J. Sotor, G. Sobon, W. Macherzynski, et al., Opt. Mater. Express 4 (1), 1-6 (2014).
  • [9] J. Boguslawski, G. Sobon, R, Zybala, et al., Opt. Express 23 (22), 29014-29023 (2015).
  • [10] J. Bogusławski, G. Sobon, K. Tarnowski, et al., Opt. Eng. 55 (8) 081316, (2016).
  • [11] C. Tan, Q. Wang, X. Fu, Opt. Mater. Express 4 (10), 2016-2025 (2014).
  • [12] Wei Jingsong, Optical Nonlinear Absorption and Refraction of Semiconductor Thin Films. In Nonlinear Super-Resolution Nano-Optics and Applications, Springer Berlin Heidelberg, 61-105 (2015).
  • [13] G. Sobon, Photon. Res. 3 (2), A56-A63 (2015).
  • [14] W. Richter, H. Kohler, C.R. Becker, Phys. Status Solidi 84, 619-628 (1977).
  • [15] G. Hao, X. Qi, Y. Fan, et al., Appl. Phys. Lett. 102, 013105 (2013).
  • [16] K.A. Kokh, V.V. Atuchin, T.A. Gavrilova, et al., Solid State Commun. 177, 16-19 (2014).
  • [17] S.M. Souza, D.M. Triches, J.C. De Lima, et al., Physica B 405, 2807-2817 (2010).
  • [18] S.D. Jackson, Nat. Photonics 6, 423-431 (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ba6090b-22ab-4f87-b7ce-3326058f4b01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.