PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Models of the Earth’s crust from controlled-source seismology – where we stand and where we go?

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Controlled-source seismology (CSS) is the primary source of information regarding the fine structure of the lithosphere. The aim of this paper is to provide an overview of the methods that are commonly used to derive Earth models from CSS data with the focus on the wide-angle reflection/refraction method. Some outlook on the future of the CSS is presented with the special emphasis on the full-wavefield based methods like full-waveform inversion, which brings high level of objectivity into modeling, as well as significantly increases spatial resolution. It is stressed that the researchers should be aware of the limitations of how the elastic parameters transcribe into the actual rock properties which should stimulate them to go beyond the simple P-wave modeling and to build multiparameter Earth models based either on the seismic data or constrained by additional geophysical fields in order to derive sound geological interpretation of their models.
Czasopismo
Rocznik
Strony
1437--1456
Opis fizyczny
Bibliogr. 68 poz.
Twórcy
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
Bibliografia
  • 1. Agudelo, W., A. Ribodetti, J.-Y. Collot, and S. Operto (2009), Joint inversion of multichannel seismic reflection and wide-angle seismic data: Improved imaging and refined velocity model of the crustal structure of the north Ecuador – south Colombia convergent margin, J. Geophys Res.114, B2, B02306, DOI: 10.1029/2008JB005690.
  • 2. Aki, K., and P.G. Richards (1980), Quantitative Seismology, Theory and Methods, W.H. Freeman & Co., San Francisco.
  • 3. Bleibinhaus, F., and H. Gebrande (2006), Crustal structure of the Eastern Alps along the TRANSALP profile from wide-angle seismic tomography, Tectonophysics414, 1-4, 51-69, DOI:10.1016/j.tecto.2005.10.028.
  • 4. Bleibinhaus, F., J.A. Hole, T. Ryberg, and G.S. Fuis (2007), Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging, J. Geophys. Res.112, B6, B06315, DOI: 10.1029/2006JB004611.
  • 5. Brenders, A.J., and R.G. Pratt (2007a), Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model, Geophys. J. Int. 168, 1, 133-151, DOI: 10.1111/j.1365-246X.2006.03156.x.
  • 6. Brenders, A.J., and R.G. Pratt (2007b), Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data, Geophys. J. Int. 168, 1, 152-170, DOI: 10.1111/j.1365-246X.2006.03096.x.
  • 7. Brossier, R., S. Operto, and J. Virieux (2009), Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion, Geophysics74, 6, WCC105-WCC118, DOI: 10.1190/1.3215771.
  • 8. Brown, L.D., K. Irie, and D. Quiros (2010), Deep seismic profiling with ambient noise. In:D.M. Finlayson (ed.), 14th Int. Symp. on Deep Seismic Profiling of the Continents and their Margins: Program and Abstracts, Geoscience, Australia, record 2010/24.
  • 9. Carbonell, R., D. Lecerf, M. Itzin, J. Gallart, and D. Brown (1998), Mapping the Moho beneath the Southern Urals with wide-angle reflections, Geophys. Res. Lett.25, 24, 4229-4232, DOI: 10.1029/1998GL900107.
  • 10. Christensen, N.I. (1996), Poisson’s ratio and crustal seismology, J. Geophys. Res.101, B2, 3139-3156, DOI: 10.1029/95JB03446.
  • 11. Christensen, N.I., and W.D. Mooney (1995), Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res. 100, B6, 9761-9788, DOI: 10.1029/95JB00259.
  • 12. Clayton, R.W., and G.A. McMechan (1981), Inversion of refraction data by wave field continuation, Geophysics46, 6, 860-868, DOI: 10.1190/1.1441224.
  • 13. Červený, V. (2001), Seismic Ray Theory, Cambridge University Press, Cambridge.
  • 14. Červený, V., and I. Pšenčík (1983), Program SEIS83. Numerical modelling of seismic wave fields in 2-D laterally varying layered structures by the ray method (software package), Charles University, Prague.
  • 15. Fuchs, K., and G. Müller (1971), Computation of synthetic seismograms with the reflectivity method and comparison with observations, Geophys. J. Roy. Astr. Soc.23, 4, 417-433, DOI: 10.1111/j.1365-246X.1971.tb01834.x.
  • 16. Gao, F., A. Levander, R.G. Pratt, C.A. Zelt, and G.-L. Fradelizio (2007), Waveform tomography at a groundwater contamination site: surface reflection data, Geophysics72, 5, G45-G55, DOI: 10.1190/1.2752744.
  • 17. Gautier, S., G. Nolet, and J. Virieux (2008), Finite-frequency tomography in a crustal environment: Application to the western part of the Gulf of Corinth, Geophys. Prospect.56, 4, 493-503, DOI: 10.1111/j.1365-2478. 2007.00683.x.
  • 18. Gélis, C., J. Virieux, and G. Grandjean (2007), Two-dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain, Geophys. J. Int.168, 2, 605-633, DOI: 10.1111/j.1365-246X.2006. 03135.x.
  • 19. Gorman, A.R. (2002), Ray-theoretical seismic traveltime inversion: modifications for a two-dimensional radially parametrized Earth, Geophys J. Int. 151, 2, 511-516, DOI: 10.1046/j.1365-246X.2002.01778.x.
  • 20. Grad, M., S.L. Jensen, G.R. Keller, A. Guterch, H. Thybo, T. Janik, T. Tiira, J. Yliniemi, U. Luosto, G. Motuza, V. Nasedkin, W. Czuba, E. Gaczyński, P. Środa, K.C. Miller, M. Wilde-Piórko, K. Komminaho, J. Jacyna, and L. Korabliova (2003), Crustal structure of the Trans-European suture zone region along POLONAISE’97 seismic profile P4,J. Geophys. Res.108, B11, 2541, DOI: 10.1029/2003JB002426.
  • 21. Hobro, J.W.D., S.C. Singh, and T.A. Minshull (2003), Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data, Geophys. J. Int.152, 1, 79-93, DOI: 10.1046/j.1365-246X.2003.01822.x.
  • 22. Holbrook, W.S., E.C. Reiter, G.M. Purdy,and M.N. Toksöz (1992), Image of the Moho across the continent-ocean transition, U.S. east coast, Geology20, 3, 203-206, DOI: 10.1130/0091-7613(1992)020<0203:IOTMAT>2.3.CO;2.
  • 23. Hole, J.A. (1992), Nonlinear high-resolution three-dimensional seismic travel time tomography, J. Geophys. Res.97, B5, 6553-6562, DOI: 10.1029/ 92JB00235.
  • 24. Jaiswal, P., C.A. Zelt, A.W. Bally, and R. Dasgupta (2008), 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India, Geophys. J. Int.173, 2, 642-658, DOI: 10.1111/j.1365-246X. 2007.03691.x.
  • 25. Jensen, S.L., H. Thybo, and POLONAISE’97 Working Group (2002), Moho topography and lower crustal wide-angle reflectivity around the TESZ in southern Scandinavia and northeastern Europe, Tectonophysics360, 1-4, 187-213, DOI:10.1016/S0040-1951(02)00354-2.
  • 26. Jones, K.A., M.R. Warner, R.P.L. Morgan, J.V. Morgan, P.J. Barton, and C.E. Price (1996), Coincident normal-incidence and wide-angle reflections from the Moho: evidence for crustal seismic anisotropy, Tectonophysics264, 1-4, 205-217, DOI:10.1016/S0040-1951(96)00127-8.
  • 27. Kamei, R., R.G. Pratt, and T. Tsuji (2012), Waveform tomography imaging of a megasplay fault system in the seismogenic Nankai subduction zone, Earth Planet. Sci. Lett.317-318, 343-353, DOI:10.1016/j.epsl.2011.10.042.
  • 28. Korenaga, J., W.S. Holbrook, G.M. Kent, P.B. Kelemen, R.S. Detrick, H.-C. Larsen, J.R. Hopper, and T. Dahl-Jensen (2000), Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography, J. Geophys. Res. 105, B9, 21591-21614, DOI: 10.1029/2000JB900188.
  • 29. Kozlovskaya, E., T. Janik, J. Yliniemi, G. Karatayev, and M. Grad (2004), Density-velocity relationship in the upper lithosphere obtained from P-and S-wave velocity models along the EUROBRIDGE’97 seismic profile and gravity data, Acta Geophys. Pol.52, 4, 397-424.
  • 30. Levander, A.R., and K. Holliger (1992), Small-scale heterogeneity and large-scale velocity structure of the continental crust, J. Geophys. Res.97, B6, 8797-8804, DOI: 10.1029/92JB00659.
  • 31. Levander, A., C.A. Zelt, and W.W. Symes (2007), Crust and lithospheric structure – active source studies of crust and lithospheric structure. In:Treatise on Geophysics. Vol. 1: Seismology and the Structure of the Earth, Elsevier, Amsterdam, 247-288, DOI: 10.1016/B978-044452748-6.00014-6.
  • 32. Majdański, M., M. Grad, A. Guterch, and SUDETES 2003 Working Group 1 (2006), 2-D seismic tomographic and ray tracing modelling of the crustal structure across the Sudetes Mountains basing on SUDETES 2003 experiment data, Tectonophysics413, 3-4, 249-269, DOI: 10.1016/j.tecto. 2005.10.042.
  • 33. Malinowski, M. (2005), Analysis of short-period Rayleigh waves recorded in the Bohemian Massif area during CELEBRATION 2000 experiment, Stud. Geophys. Geod.49, 4, 485-500, DOI: 10.1007/s11200-005-0023-3.
  • 34. Malinowski, M. (2009), Structure of the crust/mantle transition beneath the Variscan foreland in SW Poland from coincident wide-angle and near-vertical reflection data, Tectonophysics471, 3-4, 260-271, DOI:10.1016/j.tecto. 2009.02.025.
  • 35. Malinowski, M., and S. Operto (2008), Quantitative imaging of the Permo-Mesozoic complex and its basement by frequency domain waveform tomography of wide-aperture seismic data from the Polish Basin, Geophys. Prospect. 56, 6, 805-825, DOI: 10.1111/j.1365-2478.2007.00680.x.
  • 36. Malinowski, M., A. Żelaźniewicz, M. Grad, A. Guterch, T. Janik, and CELEBRA-TION Working Group (2005), Seismic and geological structure of the crust in the transition from Baltica to Palaeozoic Europe in SE Poland – CELEBRATION 2000 experiment, profile CEL02, Tectono-physics401, 1-2, 55-77, DOI: 10.1016/j.tecto.2005.03.011.
  • 37. Malinowski, M., M. Grad, A. Guterch, and CELEBRATION Working Group (2008), Three-dimensional seismic modelling of the crustal structure between East European Craton and the Carpathians in SE Poland based on CELEBRATION 2000 data, Geophys. J. Int.173, 2, 546-565, DOI: 10.1111/j.1365-246X.2008.03742.x.
  • 38. Malinowski, M., P. Środa, M. Grad, and A. Guterch (2009), Testing robust inversion strategies for three-dimensional Moho topography based on CELEBRATION 2000 data, Geophys. J. Int.179, 2, 1093-1104, DOI: 10.1111/j.1365-246X.2009.04323.x.
  • 39. Malinowski, M., S. Operto, and A. Ribodetti (2011), High-resolution seismic attenuation imaging from wide-aperture onshore data by visco-acoustic frequency-domain full-waveform inversion, Geophys. J. Int.186, 3, 1179-1204, DOI: 10.1111/j.1365-246X.2011.05098.x.
  • 40. Menke, W. (2005), Case studies of seismic tomography and earthquake location in a regional context. In:A. Levander and G. Nolet (eds.), Seismic Earth: Array Analysis of Broadband Seismograms, Geophysical Monograph Series, American Geophysical Union, 7-36, DOI: 10.1029/157GM02.
  • 41. Mereu, R.F. (2000), The complexity of the crust and Moho under the southeastern Superior and Grenville provinces of the Canadian Shield from seismic refraction – wide-angle reflection data, Can. J. Earth Sci.37, 2-3, 439-458, DOI: 10.1139/e99-122.
  • 42. Milkereit, B., D. Epili, A.G. Green, R.F. Mereu, and P. Morel-à-l’Huissier (1990), Migration of wide-angle seismic reflection data from the Grenville Front in Lake Huron, J. Geophys. Res. 95, B7, 10987-10998, DOI: 10.1029/JB095 iB07p10987.
  • 43. Nita, B., L. Dobrzhinetskaya, P. Maguire, and E. Perchuć (2012), Age-differentiated subduction regime: An explanation of regional scale upper mantle differences beneath the Alps and the Variscides of Central Europe, Phys. Earth Planet. In.206-207, 1-15, DOI:10.1016/j.pepi.2012.06.001.
  • 44. Nowack, R.L., and M.P. Matheney (1997), Inversion of seismic attributes for velocity and attenuation structure, Geophys. J. Int. 128, 3, 689-700, DOI: 10.1111/j.1365-246X.1997.tb05329.x.
  • 45. Operto, S., J. Virieux, J.-X. Dessa, and G.Pascal (2006), Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai trough, J. Geophys. Res.111, B9, DOI: 10.1029/2005JB003835.
  • 46. Oueity, J., and R.M. Clowes (2010), Nature of the Moho transition in NW Canada from combined near-vertical and wide-angle seismic-reflection studies, Lithosphere2, 5, 377-396, DOI: 10.1130/L103.1.
  • 47. Pilipenko, V.N., N.I. Pavlenkova, and U. Luosto (1999), Wide-angle reflection migration technique with an example from the POLAR profile (northern Scandinavia), Tectonophysics308, 4, 445-457, DOI: 10.1016/S0040-1951 (99)00144-4.
  • 48. Prodehl, C., and W. Mooney (2012), Exploring the Earth’s Crust: History and Results of Controlled-Source Seismology, Memoir 208, Geological Society of America Inc., Boulder.
  • 49. Ravaut, C., S. Operto, L. Improta, J. Virieux, A. Herrero, and P. dell’Aversana (2004), Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt, Geophys. J. Int.159, 3, 1032-1056, DOI: 10.1111/j.1365-246X.2004.02442.x.
  • 50. Rawlinson, N., and M. Sambridge ( 2003), Seismic traveltime tomography of the crust and lithosphere, Adv. Geophys. 46, 81-198, DOI: 10.1016/S0065-2687(03)46002-0.
  • 51. Roberts, A.W., R.W. Hobbs, M. Goldstein, M. Moorkamp, M. Jegen, and B. Heincke (2012), Crustal constraint through complete model space screening for diverse geophysical datasets facilitated by emulation, Tectonophysics572-573, 47-63, DOI: 10.1016/j.tecto.2012.03.006.
  • 52. Shipp, R.M., and S.C. Singh (2002), Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data, Geophys. J. Int.151, 2, 325-344, DOI: 10.1046/j.1365-246X.2002.01645.x.
  • 53. Środa, P. (2006) Seismic anisotropy of the upper crust in southeastern Poland – effect of the compressional deformation at the EEC margin: Results of CELEBRATION 2000 seismic data inversion, Geophys. Res. Lett.33, 22, L22302, DOI: 10.1029/2006GL027701.
  • 54. Środa, P. (2010), The bright spot in the West Carpathian upper mantle: a trace of the Tertiary plate collision and a caveat for a seismologist, Geophys. J. Int.182, 1, 1-10, DOI: 10.1111/j.1365-246X.2010.04595.x.
  • 55. Środa, P.,W. Czuba, M. Grad, A. Guterch, A.K. Tokarski, T. Janik, M. Rauch, G.R. Keller, E. Hegedüs, J. Vozár, and CELEBRATION Working Group (2006), Crustal and upper mantle structure of the Western Carpathians from CELEBRATION 2000 profiles CEL01 and CEL04: seismic models and geological implications, Geophys. J. Int.167, 2, 737-760, DOI: 10.1111/ j.1365-246X.2006.03104.x.
  • 56. Tape, C., Q. Liu, A. Maggi, and J. Tromp (2009), Adjoint tomography of the Southern California crust, Science 325, 5943, 988-992, DOI: 10.1126/ science.1175298.
  • 57. Tape, C., Q. Liu, A. Maggi, and J. Tromp (2010), Seismic tomography of the southern California crust based on spectral-element and adjoint methods, Geophys. J. Int.180, 1, 433-462, DOI: 10.1111/j.1365-246X.2009.04429.x.
  • 58. Tarantola, A. (1984), Inversion of seismic reflection data in the acoustic approximation, Geophysics49, 8, 1259-1266, DOI: 10.1190/1.1441754.
  • 59. Trinks, I., S.C. Singh, C.H. Chapman, P.J. Barton, M. Bosch, and A. Cherrett (2005), Adaptive traveltime tomography of densely sampled seismic data, Geophys. J. Int.160, 3, 925-938, DOI: 10.1111/j.1365-246X.2005.02531.x.
  • 60. Vidale, J.E. (1990), Finite-difference calculation of traveltimes in three dimensions, Geophysics55, 5, 521-526, DOI: 10.1190/1.1442863.
  • 61. Virieux, J., and S. Operto (2009), An overview of full-waveform inversion in exploration geophysics, Geophysics74, 6, WCC1-WCC26, DOI: 10.1190/ 1.3238367.
  • 62. White, D.J., and R.M. Clowes (1994), Seismic attenuation structure beneath the Juan de Fuca Ridge from tomographic inversion of amplitudes, J. Geophys. Res.99, B2, 3043-3056, DOI: 10.1029/93JB02039.
  • 63. Yliniemi, J., E. Kozlovskaya, S.-E. Hjelt, K. Komminaho, A. Ushakov, and SVEKALAPKO Seismic Tomography Working Group (2004), Structure of the crust and uppermost mantle beneath southern Finland revealed by analysis of local events registered by the SVEKALAPKO seismic array, Tectonophysics 394, 1-2, 41-67, DOI: 10.1016/j.tecto.2004.07.056.
  • 64. Zelt, B.C., M. Talwani, and C.A. Zelt (1998), Prestack depth migration of dense wide-angle seismic data, Tectonophysics286, 1-4, 193-208, DOI: 10.1016/ S0040-1951(97)00265-5.
  • 65. Zelt, C.A., and P.J. Barton (1998), Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin, J. Geophys. Res. 103, B4, 7187-7210, DOI: 10.1029/97JB03536.
  • 66. Zelt, C.A., and R.B. Smith (1992), Seismic traveltime inversion for 2-D crustal velocity structure, Geophys. J. Int.108, 1, 16-34, DOI: 10.1111/j.1365-246X.1992.tb00836.x.
  • 67. Zelt, C.A, K. Sain, J.V. Naumenko, and D.S. Sawyer (2003), Assessment of crustal velocity models using seismic refraction and reflection tomography, Geophys. J. Int. 153, 3, 609-626, DOI: 10.1046/j.1365-246X.2003.01919.x.
  • 68. Zelt, C.A., R.G. Pratt, A.J. Brenders, S. Hanson-Hedgecock, and J.A. Hole (2005), Advancements in long-offset seismic imaging: A blind test of traveltime and waveform tomography, American Geophysical Union, Spring Meeting 2005, Abstract S52A-04.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3ba39d63-cfb2-4834-b539-f05616a5de5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.