PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the temperature difference between the heat source and the evaporation temperature in ORC systems working with natural refrigerants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of waste heat in many branches of industry is limited due to temperature in the range of 30 to 100°C. One of the methods of using waste heat are devices that implement the Organic Rankine Cycle (ORC). In currently used ORC systems, the heat source temperature is at least 80oC, while the low temperature heat source (usually atmospheric air) has a temperature of 30oC. The work analyzes the influence of the organic fluids properties on the performance of the proposed installation driven by the waste heat and working based on the ORC. The basic operation parameters in nominal conditions were determined for three selected natural refrigerants R290, R600a, R717 and one synthetic R245fa. The condensing temperature 30oC were defined as a nominal value. The research results compare how the generated electric power will change depending on the temperature difference between the temperature of the heat source and the temperature of evaporation. It turns out that for a device with finite dimensions, the maximum power is obtained for a specific evaporation temperature. And this is not the highest temperature that can be achieved. The highest evaporation temperature allows for the highest efficiency of the system, but not the maximum of capacity.
Rocznik
Tom
Strony
46--57
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Warsaw University of Technology, Warsaw, Poland
  • Warsaw University of Technology, Warsaw, Poland
autor
  • Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • 1. Bao, J. & Zhao, L. A review of working fluid and expander selections for organic Rankine cycle. Renew Sustain Energy Rev 24, 325–42 (2013).
  • 2. Bu, S. et al. Comprehensive performance analysis and optimization of novel SCR-ORC system for condensation heat recovery. Applied Thermal Engineering 201, 117825. issn: 1359-4311 (2022).
  • 3. Chacartegui, R., Sanchez, D., Munoz, J. & Sanchez, T. Alternative ORC bottoming cycles FOR combined cycle power plants. Appl Energy 86, 2162–70 (2009).
  • 4. Chen, H., Goswami, D. & Stefanakos, E. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renew Sustain Energy Rev 14, 3059–67 (2010).
  • 5. Chys, M., Broek, M., Vanslambrouck, B. & Paepe, M. Potential of zeotropic mixtures as working fluids in organic Rankine cycles. Energy 44, 623–32 (2012).
  • 6. Feng, Y. et al. Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery. Energy Convers Manag 106, 859–72 (2015).
  • 7. Grzebielec, A. Termodynamiczne podstawy przenoszenia ciepła w termoakustycznych urządzeniach chłodniczych. Chłodnictwo 44, 12–6 (2009).
  • 8. Haervig, J., Sorensen, K. & Condra, T. Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery. Energy 96, 592–602 (2016).
  • 9. He, C. et al. The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle. Energy 38, 136–43 (2012).
  • 10. He, C. et al. A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources. Energy 68, 283–91 (2014).
  • 11. Heberle, F., Preisinger, M. & Bruggemann, D. Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources. Renew Energy 37, 364–70 (2012).
  • 12. Hung, T. Waste heat recovery of organic Rankine cycle using dry fluids. Energy Convers Manag 42, 539–53 (2001).
  • 13. Hung, T. e. a. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy 22, 661–667 (7 1997).
  • 14. Kajurek, J., Rusowicz, A. & Grzebielec, A. The Influence of Stack Position and Acoustic Frequency on the Performance of Thermoacoustic Refrigerator with the Standing Wave. Arch Thermodyn. 38 (2017).
  • 15. Kajurek, J. et al. Influence of working fluid properties on performance of organic Rankine cycle. Rynek Energii, 68–79 (2017).
  • 16. Lakew, A. & Bolland, O. Working fluids for low-temperature heat source. Appl Therm Eng 30, 1262–8 (2010).
  • 17. Le, V., Kheiri, A., Feidt, M. & Pelloux-Prayer, S. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid. Energy (2014).
  • 18. Li, Y., Du, M., Wu, C., Wu, S. & Liu, C. Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery. Energy 77, 509–19 (2014).
  • 19. Liu, Q., Duan, Y. & Yang, Z. Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids. Appl Energy 115, 394–404 (2014).
  • 20. Longo, G. A., Mancin, S., Righetti, G., Zilio, C. & Steven Brown, J. Assessment of the low-GWP refrigerants R600a, R1234ze(Z) and R1233zd(E) for heat pump and organic Rankine cycle applications. Applied Thermal Engineering 167, 114804. issn: 1359-4311 (2020).
  • 21. Maizza, V. & Maizza, A. Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems. Appl Therm Eng 21, 381–90 (2001).
  • 22. Mikielewicz, D. & Mikielewicz, J. A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP. Appl Therm Eng 30, 2357–62 (2010).
  • 23. Oyewunmi, O. & Markides, C. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System. Energies 9, 448 (2016).
  • 24. Papadopoulos, A., Stijepovic, M., Linke, P., Seferlis, P. & Voutetakis, S. Multi-level Design and Selection of Optimum Working Fluids and ORC Systems for Power and Heat Cogeneration from Low Enthalpy Renewable Sources. Comput Aided Chem Eng 30, 66–70 (2012).
  • 25. Quoilin, S., Broek, M., Declaye, S., Dewallef, P. & Lemort, V. Techno-economic survey of organic rankine cycle (ORC) systems. Renew Sustain Energy Rev 22, 168–86 (2013).
  • 26. Roy, J., Mishra, M. & Misra, A. Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle. Energy 35, 5049–62 (2010).
  • 27. Rusowicz, A. & Grzebielec, A. Legal and technical aspects of replacement refrigerants in refrigeration and air conditioning. J Civ Eng Environ Archit 62, 359–68 (2015).
  • 28. Saleh, B., Koglbauer, G., Wendland, M. & Fischer, J. Working fluids for low-temperature organic Rankine cycles. Energy 32, 1210–21 (2007).
  • 29. Schilling, J., Gross, J. & Bardow, A. Integrated design of ORC process and working fluid using process flowsheeting software and PC-SAFT. Energy Procedia 129, 129–36 (2017).
  • 30. Shokati, N., Ranjbar, F. & Yari, M. Comparative and parametric study of double flash and single flash/ORC combined cycles based on exergoeconomic criteria. Appl Therm Eng 91, 479–95 (2015).
  • 31. Tchanche, B., Lambrnos, G., Frangoudakis, A. & Papadakis, G. Low-grade heat conversion into power using organic Rankine cycles - A review of various applications. Renew Sustain Energy Rev 15, 3963–79 (2011).
  • 32. Unamba, C. et al. Experimental Investigation of the Operating Point of a 1-kW ORC System. Energy Procedia 129, 875–82 (2017).
  • 33. Wang, S., Liu, C., Zhang, S., Li, Q. & Huo, E. Multi-objective optimization and fluid selection of organic Rankine cycle (ORC) system based on economic-environmental-sustainable analysis. Energy Conversion and Management 254, 115238. issn: 0196-8904 (2022).
  • 34. Wang, Z., Zhou, N., Guo, J. & Wang, X. Fluid selection and parametric optimization of organic Rankine cycle using low temperature waste heat. Energy 40, 107–15 (2012).
  • 35. Zhai, A., An, Q., Shi, L., Lemort, V. & Quoilin, S. Categorization and analysis of heat sources for organic Rankine cycle systems. Renew Sustain Energy Rev 64, 790–805 (2016).
  • 36. Zhao, L. & Bao, J. Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures. Appl Energy 130, 748–56 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b9d19d7-83d6-40a0-9e6d-833c1588021a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.