PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Natural transverse vibrations of helical springs in sections covered with elastic coatings

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been demonstrated in previous studies that local elastomer coatings covering the end coils of helical springs can efficiently reduce the amplitudes of circum-resonant vibrations in such springs. The analysis of the influence that elastic coatings have on the frequencies and modes of natural transverse vibrations of springs is presented in this paper. The concept of the equivalent beam of the Timoshenko type is utilized in calculations of the frequencies and modes of transverse vibrations. The model developed allows users to determine the frequencies and modes of symmetric as well as antisymmetric vibrations of axially loaded springs with elastic coatings of arbitrary length. A comparison of the results obtained using FEM analysis, in which the model represented the actual spring geometry, with the results obtained by means of the presented model indicates its high accuracy.
Rocznik
Strony
949--959
Opis fizyczny
Bibliogr. 43 poz., rys., wykr., tab.
Twórcy
  • AGH University of Science and Technology, Department of Machine Design and Technology, 30 Mickiewicza Ave., 30-059 Krakow, Poland
Bibliografia
  • [1] S.V. Sorokin, “Linear dynamics of elastic helical springs: asymptotic analysis of wave propagation”, Proc. R. Soc. A 465, 1513‒1537 (2009).
  • [2] S. Wang, S. Lei, J. Zhou, and H. Xiao, “Mathematical model for determination of strand twist angle and diameter in stranded-wire helical springs”, Journal of Mechanical Science and Technology 24 (6), 1203‒1210 (2010).
  • [3] J. Snamina and B. Sapiński, ”Energy balance in self-powered MR damper-based vibration reduction system”, Bull. Pol. Ac.: Tech. 59 (1), 75‒80 (2011).
  • [4] D.S. Yantek and M.J. Lowe, “Analysis of a mechanism suspension to reduce noise from horizontal vibrating screens”, Noise Control Engineering Journal 59 (6), 568‒580 (2011).
  • [5] W.T Mayers, “Helical coil spring damper assemblies”, US Patent, 4538563A, 1985.
  • [6] S. Nix, “Schubfeder”, DE Patent, 10104936A1, 2002.
  • [7] C. Berger and B. Kaiser, “Results of very high cycle fatigue tests on helical compression springs”, International Journal of Fatigue 28, 1658‒1663 (2006).
  • [8] J. Krużelecki and D. Szubartowski, “Influence of support compliances on stability and limiting slenderness ratio of compression helical springs”, Journal of Theoretical and Applied Mechanics 52 (1), 81‒92 (2014).
  • [9] C. Muzio, “Coated coil spring, particularly for automotive suspensions”, Patent, EP0878637A3, 1999.
  • [10] K. Michalczyk, “Influence of the elastomeric coating on parameters of steady state vibrations of coil springs in the resonance and outside it”, Journal of Theoretical and Applied Mechanics 52 (2), 507‒518 (2014).
  • [11] K. Michalczyk, “Dynamic stresses in helical springs locally coated with highly-damping material in resonant longitudinal vibration conditions”, International Journal of Mechanical Sciences 90, 53‒60 (2015).
  • [12] A.E.M. Love, “The propagation of waves of elastic displacement along a helical wire”, Transactions of the Cambridge Philosophical Society 18, 364‒374 (1899).
  • [13] W.H. Wittrick, “On elastic wave propagation in helical springs”, International Journal of Mechanical Sciences 8, 25‒47 (1966).
  • [14] J.E. Mottershead, “Finite elements for dynamical analysis of helical rods”, International Journal of Mechanical Sciences 22, 267‒283 (1980).
  • [15] B. Tabarrok, A.N. Sinclair, M. Farshad, and H. Yi, “On the dynamics of spatially curved and twisted rods – a finite element formulation”, Journal of Sound and Vibration 123(2), 315‒326 (1988).
  • [16] N. Stander and R.J. Du Preez, “Vibration analysis of coil Springs by means of isoparametric curved beam finite elements”, Communications in Applied Numerical Methods 8, 373‒383 (1992).
  • [17] M. Taktak, F. Dammak, S. Abid, and M. Haddar, “A finite element for dynamic analysis of a cylindrical isotropic helical spring”, Journal of Materials and Structures 3, 641‒658 (2008).
  • [18] D. Pearson, “The transfer matrix method for the vibration of compressed helical springs”, Journal of Mechanical Engineering Science 24, 163‒171 (1982).
  • [19] V. Yildrim, “Investigation of parameters affecting free vibration frequency of helical springs”, International Journal for Numerical Methods in Engineering 39, 99‒114 (1996).
  • [20] L.E. Becker, G.G. Chassie, and W.L. Cleghorn, “On the natural frequencies of helical compression springs”, International Journal of Mechanical Sciences 44, 825‒841 (2002).
  • [21] J.A. Haringx, “On highly compressible springs and rubber rods, and their application for vibration-free mountings”, II. Philips Research Reports 4, 49‒80 (1949).
  • [22] J. Krużelecki and M. Życzkowski, “On the concept of an equivalent column in the problem of stability of compressed helical springs”, Ingenieur-Archiv 60, 367‒377 (1990).
  • [23] V. Yildrim, “An efficient numerical method for predicting the natural frequencies of cylindrical helical springs”, International Journal of Mechanical Sciences 41, 919‒939 (1999).
  • [24] W.H. Wittrick and F.W. Williams, “A general algorithm for computing natural frequencies of elastic structures”, Quarterly Journal of Mechanics and Applied Mathematics 24, 263‒284 (1971).
  • [25] D. Pearson and W.H. Wittrick, “An exact solution for the vibration of helical springs using a Bernoulli-Euler model”, International Journal of Mechanical Sciences 28, 83‒96 (1986).
  • [26] J. Lee and D.J. Thompson, “Dynamic stiffness formulation, free vibration and wave motion of helical springs”, Journal of Sound and Vibration, 239 297‒320 (2001).
  • [27] J. Lee, “Free vibration analysis of cylindrical helical springs by the pseudospectral method”, Journal of Sound and Vibration 302, 185‒196 (2007).
  • [28] A.M. Yu and Y. Hao, “Improved Riccati transfer matrix method for free vibration of non-cylindrical helical springs including warping”, Shock and Vibration 19, 1167‒1180 (2012).
  • [29] S. Timoshenko, Theory of elastic stability, McGraw Hill, New York and London, 1936.
  • [30] J.A. Haringx, “On highly compressible springs and rubber rods, and their application for vibration-free mountings I.” Philips Research Reports 4, 401‒449 (1948).
  • [31] A.R. Guido, L. Della Pietra, and S. Della Valle, “Transverse vibrations of helical springs”, Meccanica 13 (2), 90‒108 (1978).
  • [32] L. Della Pietra and S. Della Valle, “On the dynamic behavior of axially excited helical springs”, Meccanica 17, 31‒43 (1982).
  • [33] Ch. Flenker and U. Uphoff, “Efficient Valve-Spring Modelling with MBS Valve-Train Design”’ MTZ 66, 946‒950 (2005).
  • [34] V. Kobelev, “Effect of static axial compression on the natural frequencies of helical springs”, Multidiscipline Modeling in Materials and Structures 10, 379‒398 (2014).
  • [35] K. Michalczyk, “Analysis of lateral vibrations of the axially loaded helical spring”, Journal of Theoretical and Applied Mechanics 53 (3), 754‒755 (2015).
  • [36] N.G. Stephen and S. Puchegger, “On the valid frequency range of Timoshenko beam theory”, Journal of Sound and Vibration 297, 1082‒1087 (2006).
  • [37] L. Majkut, “Free and forced vibrations of Timoshenko beams described by single difference equation”, Journal of Theoretical and Applied Mechanics 47 (1), 193‒210 (2009).
  • [38] I.C. Finegan and R.F. Gibson, “Recent research on enhancement of damping in polymer composites”, Composite Structures 44, 89‒98 (1999).
  • [39] B. Benchekchou, M. Coni, H.V.C. Howarth, and R.G. White, “Some aspects of vibration damping improvement in composite materials”, Composites Part B: Engineering 29 (6), 809‒817 (1998).
  • [40] D.D.L Chung, “Structural composite materials tailored for damping”, Journal of Alloys and Compounds 355, 216‒223 (2003).
  • [41] A. Kęsy and J. Kotliński, “Mechanical properties of parts produced by using polymer jetting technology”, Archives of Civil and Mechanical Engineering X (3), 37‒50 (2010).
  • [42] D.W. Van Krevelen and K. te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier, Amsterdam, 2009.
  • [43] C.M. Harris and A.G. Piersol, Harris’ shock and vibration handbook, McGRAW-HILL, New York, 2002.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b997adc-ff78-4a86-a112-5613d6daaffc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.