Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electrification of district heating and deep integration of sectors of national economies are fundamental elements of the future smart energy systems. This paper discusses the problem of optimal sizing of large-scale high-temperature heat pumps using treated sewage water as a heat source in a coal-fired district heating system. The study presents an approach to modelling of heat pump system that enables techno-economic analysis for investment decision making. Such analysis is enabled by a black-box-type identification model of the selected industrial heat pump. The model was developed based on the data generated by physical modelling of the heat pump using Ebsilon Professional software. In addition, it is proposed that the heat pump system is integrated with a dedicated photovoltaic power plant. The case study takes into consideration site-specific technical, economic, ecological, and legal constraints, weather conditions, hydraulic performance of the heat-ing network, and variability of loads within the sewage and the district heating systems. The results revealed that the proposed modelling approach is effective regarding multiple simulations and system optimisation. In addition, it was found that large-scale heat pump projects can be technically feasible and profitable if the heat pump is appropriately sized and operated. In the given case, the optimum size of the heat pump for a city of around 180 000 inhabitants is around 12 MW under maximum winter load.
Czasopismo
Rocznik
Tom
Strony
107--124
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Silesian University of Technology, Konarskiego 22, Gliwice 44-100, Poland
Bibliografia
- [1] International Energy Agency (2021). Net Zero by 2050. A Roadmap for the Global Energy Sector. IEA Special Report. IEA Publications. https://www.iea.org/reports/net-zero-by-2050 [accessed 16 Feb. 2024].
- [2] World Economic Forum Global Future Council on Energy 2016-18 (2018). Transformation of the Global Energy System. World Economic Forum. http://www3.weforum.org/docs/White_Pa-per_Transformation_Global_Energy_System_report_2018.pdf [accessed 16 Feb. 2024].
- [3] IREA (2019). Global Energy Transformation. A Roadmap To 2050 (2019 edition). International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/ IRENA/Agen-cy/Publication/2019/Apr/IRENA_Global_Energy_Transfor-mation_2019.pdf [accessed 16 Feb. 2024].
- [4] Lund, H., Østergaard, P.A., Connolly, D., & Mathiesen, B.V. (2017). Smart energy and smart energy systems. Energy, 137, 556−565. doi:10.1016/j.energy.2017.05.123
- [5] Communication from the Commission to the European Parlia-ment, the Council, the European Economic and Social Committee and the Committee of the Regions (2016) An EU Strategy on Heating and Cooling. Publications Office of the EU, Brussels, 16.2.2016. https://eur-lex.europa.eu/legal-content/en/TXT/ ?uri= CELEX:52016DC0051 [accessed 16 Feb. 2024].
- [6] Delmastro, Ch., Briens, F., Husek, M., & Martinez-Gordon, R. (2022). District Heating. International Energy Agency Tracking report. IEA. https://www.iea.org/energy-system/buildings/dis-trict-heating [accessed 16 Feb. 2024].
- [7] Polish Energy Regulatory Office (2022). District Heating in Numbers. URE (in Polish). https://www.ure.gov.pl/pl/cieplo/en-ergetyka-cieplna-w-l/11407,2022 [accessed 16 Feb. 2024].
- [8] Polish Ministry of Climate and Environment (2022). Project of the strategy for district heating till 2030 with a perspective till 2040. BIP (in Polish). https://bip.mos.gov.pl/strategie-plany-pro-gramy/strategia-dla-cieplownictwa-do-2030-r-z-perspektywa-do-2040-r/ [accessed 16 Feb. 2024].
- [9] Lund, H., Werner, S., Wiltshire, R., Svendsen S., Thorsen J.E., Hvelplund F., Mathiesen, B.V. (2014). 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sus-tainable energy systems. Energy, 68, 1−11. doi: 10.1016/j.en-ergy.2014.02.089
- [10] Lund, H. (2018). Renewable heating strategies and their conse-quences for storage and grid infrastructures comparing a smart grid to a smart energy systems approach. Energy, 151, 94−102. doi: 10.1016/j.energy.2018.03.010
- [11] The project ‘‘Construction of a Cogeneration System in Szlachęcin’’ as a Step Towards District Heating Transformation. (in Polish). Nowoczesne Ciepłownictwo, Sept. 2022. https://nowoczesne-cieplownictwo.pl/projekt-budowa-systemu-kogeneracji-w-szlachecinie-jako-krok-w-kierunku-transfor-macji-cieplownictwa/ [accessed 16 Feb. 2024].
- [12] Fortum (2022). Heat from wastewater will be fed into Fortum's district heating network in Wrocław (in Polish). https://www.for-tum.pl/media/2022/11/cieplo-ze-sciekow-trafi-do-sieci-cieplowniczej-fortum-we-wroclawiu. [accessed 16 Feb. 2024].
- [13] Wysocki, T. (2022). The largest heat pump is being built in Wrocław. Wastewater will be used to heat 5,000 flats. wroclaw.pl (in Polish). https://www.wroclaw.pl/dla-mieszkanca/powstaje-wrompa-pompa-ciepla-miejska-siec-cieplownicza-fortum-mpwik [accessed 16 Feb. 2024].
- [14] Volkova, A., Koduvere, H., & Pieper, H. (2022). Large-scale heat pumps for district heating systems in the Baltics: Potential and impact. Renewable and Sustainable Energy Reviews, 167, 112749. doi: 10.1016/j.rser.2022.112749
- [15] Johansen, K., & Werner, S. (2022). Something is sustainable in the state of Denmark: A review of the Danish district heating sec-tor. Renewable and Sustainable Energy Reviews 158, 112117. doi: 10.1016/j.rser.2022.112117
- [16] Barco-Burgos, J., Bruno, J.C., Eicker, U., Saldaña-Robles, A.L., & Alcántar-Camarena, V. (2022). Review on the integration of high-temperature heat pumps in district heating and cooling net-works. Energy 239(E), 122378. doi: 10.1016/j.energy.2021. 122378
- [17] David, A., Vad Mathiesen, B., Averfalk, H., Werner, S., & Lund, H. (2017). Heat roadmap Europe: Large-scale electric heat pumps in district heating systems. Energies, 10(4), 578. doi: 10.3390/ en10040578
- [18] Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J., & Bertsch, S.S. (2018). High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application po-tentials. Energy, 152, 985−1010. doi: 10.1016/j.energy.2018.03. 166
- [19] Bach, B., Werling, J., Ommen, T., Münster, M., Morales, J.M., & Elmegaard, B. (2016). Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen. Energy, 107, 321−334. doi: 10.1016/j.energy.2016.04.029
- [20] Popovski, E., Aydemir, A., Fleiter, T., Bellstädt, D., Büchele, R., & Steinbach, J. (2019). The role and costs of large-scale heat pumps in decarbonising existing district heating networks − A case study for the city of Herten in Germany. Energy, 180, 918−933. doi: 10.1016/j.energy.2019.05.122
- [21] Trabert, U., Jesper, M., Bergstraesser, W., Best, I., Kusyy, O., Orozaliev, J., & Vajen, K. (2021). Techno-economic evaluation of electricity price-driven heat production of a river water heat pump in a German district heating system. International Journal of Sustainable Energy Planning and Management, 31, 121–142. doi: 10.5278/ijsepm.6291
- [22] Fambri, G., Mazza, A., Guelpa, E., Verda, V., & Badami, M. (2023). Power-to-heat plants in district heating and electricity dis-tribution systems: A techno-economic analysis. Energy Conver-sion and Management 276, 116543. doi: 10.1016/j.enconman. 2022.116543
- [23] Ziemele, J., & Dace, E. (2022). An analytical framework for as-sessing the integration of the waste heat into a district heating system: Case of the city of Riga. Energy, 254(B), 124285. doi: 10.1016/j.energy.2022.124285
- [24] Świerzewski, M., Kalina, J. (2020): Optimisation of biomass-fired cogeneration plants using ORC technology. Renewable Energy, 159, 195–214. doi: 10.1016/j.renene.2020.05.155
- [25] Świerzewski, M., Kalina, J., & Musiał, A. (2021). Techno-eco-nomic optimization of ORC system structure, size and working fluid within biomass-fired municipal cogeneration plant retrofit-ting project. Renewable Energy, 180, 281–296. doi: 10.1016/ j.renene.2021.08.068
- [26] Mateu-Royo, C., Navarro-Esbrí J., Mota-Babiloni, A., Amat-Al-buixech, M., & Molés F. (2018). Theoretical evaluation of differ-ent high-temperature heat pump configurations for low-grade waste heat recovery. International Journal of Refrigeration, 90, 229–237. doi: 10.1016/j.ijrefrig.2018.04.017
- [27] Wang, H., Wang, H., Zhou, H., & Zhu T. (2018). Modeling and optimization for hydraulic performance design in multi-source district heating with fluctuating renewables. Energy Conversion and Management, 156, 113–129. doi: 10.1016/j.enconman.2017. 10.078
- [28] Macuk, R. (2019). Heating in Poland. Edition 2019. Report. Forum Energii. https://www.forum-energii.eu/en/download/ down-load/heating-in-poland-2019-edition [accessed 20 Feb. 2020].
- [29] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Inte-grated Pollution Prevention and Control). Official Journal of the European Union, L 334/17.
- [30] Directive 2015/2193 of the European Parliament and of the Coun-cil of 25 November 2015 on the Limitation of Emissions of Cer-tain Pollutants into the Air from Medium Combustion Plants. Of-ficial Journal of The European Union, L 313/1.
- [31] Siemens Energy (2023). Large-scale industrial heat pumps. Sie-mens Energy Global. https://www.siemens-energy.com/global/ en/home/products-services/product-offerings/heat-pumps.html [accessed 16 Feb. 2024].
- [32] Modelon (2024). Modelon Case Study: Adapting to The Future of Energy Technology with System Simulation. Modelon Impact. https://modelon.com/support/heat-pump-technology-adapting-to-the-future-with-system-simulation/ [accessed 16 Feb. 2024].
- [33] Proposal for a Directive of the European Parliament and of the Council amending Directive (EU) 2018/2001 on the promotion of the use of energy from renewable sources, Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. COM/2022/222 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM: 2022:222:FIN [accessed 16 Feb. 2024].
- [34] Project ‘‘The Green Energy Park’’. PEC Gliwice (in Polish). https://parkzielonejenergii.pl/ [accessed 16 Feb. 2024].
- [35] Drzozga, A., & Obarski, D. (2022). Industrial Heat Pumps Tech-nology. Siemens Energy. Business presentation. Warsaw, February 2022. (Unpublished).
- [36] Industrial Heat Pump. IEA Technology Collaboration Pro-gramme on Heat Pumping Technologies (HPT TCP). Annex 58. Siemens Energy. https://heatpumpingtechnologies.org/an-nex58/wp-content/uploads/sites/70/2022/07/siemens-energy-hthp-technology.pdf [accessed 16 Feb. 2024].
- [37] Ebsilon Professional. STEAG energy services GmbH. https://www.ebsilon.com/en/2019. [accessed 16 Feb. 2024].
- [38] Kalina, J., Świerzewski, M., & Szega, M. (2017). Simulation based performance evaluation of biomass fired cogeneration plant with ORC. Energy Procedia, 129, 660–667. doi: 10.1016/ j.egypro. 2017.09.137
- [39] Vitec Energy (2023): NetSim − Grid Simulation System. https://www.vitec-energy.com/netsim-grid-simulation/ [accessed 16 Feb. 2024].
- [40] Pieper, H., Ommen, T., Buhler, F., Paaske, B.L., Elmegaard, B., & Markussen, W.B. (2018). Allocation of investment costs for large-scale heat pumps supplying district heating. Energy Proce-dia, 147, 358–367. doi: 10.1016/j.egypro.2018.07.104
- [41] Danish Energy Agency (2023). Technology Data for Generation of Electricity and District Heating. https://ens.dk/en/our-ser-vices/projections-and-models/technology-data/technology-data-generation-electricity-and [accessed 16 Feb. 2024].
- [42] Grosse, R., Christopher, B., Stefan, W., Geyer, R., & Robbi, S. (2017). Long term (2050) projections of techno-economic perfor-mance of large-scale heating and cooling in the EU, Publications Office of the European Union, EUR28859. doi: 10.2760/24422
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b9878e0-2e62-483d-8f81-a281aef5627d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.