PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Geometric properties of noncommutative symmetric spaces of measurable operators and unitary matrix ideals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This is a review article of geometric properties of noncommutative symmetric spaces of measurable operators E(M., t), where M is a semifinite von Neumann algebra with a faithful, normal, semifinite trace τ, and E is a symmetric function space. If E co is a symmetric sequence space then the analogous properties in the unitary matrix ideals CE are also presented. In the preliminaries we provide basic definitions and concepts illustrated by some examples and occasional proofs. In particular we list and discuss the properties of general singular value function, submajorization in the sense of Hardy, Littlewood and Polya, Kothe duality, the spaces Lp (M, τ), 1 ≤p < ∞, the identification of CE and G(B(H),tr) for some symmetric function space G, the commutative case when E is identified with E(N, t) for N isometric to L∞ with the standard integral trace, trace preserving *-isomorphisms between E and a *-subalgebra of E (M, τ), and a general method for removing the assumption of non-atomicity of . The main results on geometric properties are given in separate sections. We present the results on (complex) extreme points, (complex) strict convexity, strong extreme points and midpoint local uniform convexity, k-extreme points and k-convexity, (complex or local) uniform convexity, smoothness and strong smoothness, (strongly) exposed points, (uniform) Kadec-Klee properties, Banach-Saks properties, Radon-Nikodym property and stability in the sense of Krivine-Maurey. We also state some open problems.
Rocznik
Strony
45--122
Opis fizyczny
Bibliogr. 116 poz.,
Twórcy
  • Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL 32224
autor
  • Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152
Bibliografia
  • [1] A. Akemann, J. Anderson, and G. K. Pederson, Triangle inequalities in operator algebras, Linear and Multilinear Algebra 11 (1982), 167-178, DOI 10.1080/03081088208817440.
  • [2] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press Inc., Orlando, FL 1985.
  • [3] J. Arazy, On the geometry of the unit ball of unitary matrix spaces, Integr. Equ. Oper. Theory 4 (1981), no. 2,151-171, DOI 10.1007/BF01702378.
  • [4] J. Arazy, Basic sequences, embeddings, and the uniqueness of the symmetric structure on unitary matrix spaces, J. Funct. Anal. 40 (1981), 302-340, DOI 10.1016/0022-1236(81)90052-5.
  • [5] J. Arazy, More on convergence in unitary matrix spaces, Proc. Amer. Math. Soc. 83 (1981), no. 1, 44-48, DOI 10.2307/2043888.
  • [6] J. Arazy, On stability of unitary matrix spaces, Proc. of Amer. Math. Soc. 87 (1983), 317-321, DOI 10.2307/2043709.
  • [7] J. Arazy and P. K. Lin, On p-convexity and q-concavity of unitary matrix spaces, Integr. Equ. Oper. Theory 8 (1985), no. 3, 295-313.
  • [8] S. A. Argyros, G. Godefroy, and H. P. Rosenthal, Descriptive set theory and Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, 1007-1069, DOI 10.1016/S1874-5849(03)80030-X.
  • [9] P. Bandyopadhyay, V. P. Fonf, B. L. Lin, and M. Martín, Structure of nested sequences of balls in Banach spaces, Houston J. Math. 29 (2003), no. 1,173-193.
  • [10] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, vol. 129, Academic Press Inc., Boston, MA 1988.
  • [11] S. Chen, Geometry of Orlicz Spaces, Dissertationes Math. (Rozprawy Mat.) 356 (1996).
  • [12] L. Chen, Y. Cui, and H. Hudzik, Criteria for complex strongly extreme points of Musielak-Orlicz function spaces, Nonlinear Anal. 70 (2009), no. 6, 2270-2276, DOI 10.1016/j.na.2008.03.005.
  • [13] V. I. Chilin, P. G. Dodds, and F. A. Sukochev, The Kadec-Klee property in symmetric spaces of measurable operators, Israel J. Math. 97 (1997), 203-219, DOI 10.1007/BF02774037.
  • [14] V. I. Chilin, P. G. Dodds, A. A. Sedaev, and F. A. Sukochev, Characterisations of Kadec-Klee properties in symmetric spaces of measurable functions, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4895-4918, DOI 10.1090/S0002-9947-96-01782-5.
  • [15] V. I. Chilin, A. V. Krygin, and F. A. Sukochev, Extreme points of convex fully symmetric sets of measurable operators, Integr. Equ. Oper. Theory 15 (1992), no. 2,186-226, DOI 10.1007/BF01204237.
  • [16] V. I. Chilin, A. V. Krygin, and F. A. Sukochev, Local uniform and uniform convexity of noncommutative symmetric spaces of measurable operators, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 355-368, DOI 10.1017/S0305004100075459.
  • [17] V. I. Chilin and F. A. Sukochev, Weak convergence in non-commutative symmetric spaces, J. Operator Theory 31(1994), 35-65.
  • [18] M. M. Czerwińska, Geometric properties of symmetric spaces of measurable operators, (Order No. 3476359, The University of Memphis), ProQuest Dissertations and Theses, vol. 131 2011, available at http://search. proquest.com/docview/893659843.
  • [19] M. M. Czerwińska, Complex uniform rotundity in symmetric spaces of measurable operators, J. Math. Anal. Appl. 395 (2012), no. 2, 501-508, DOI 10.1016/j.jmaa.2012.05.046.
  • [20] M. M. Czerwińska and A. Kamińska, Complex rotundity properties and midpoint local uniform rotundity in symmetric spaces of measurable operators, Studia Math. 201 (2010), no. 3, 253-285, DOI 10.4064/sm201-3-3.
  • [21] M. M. Czerwińska and A. Kamińska, k-extreme points in symmetric spaces of measurable operators, Integr. Equ. Oper. Theory 82 (2015), no. 2, 189-222, DOI 10.1007/s00020-014-2206-1.
  • [22] M. M. Czerwińska, A. Kamińska, and D. Kubiak, Smooth and strongly smooth points in symmetric spaces of measurable operators, Positivity 16 (2012), no. 1, 29-51, DOI 10.1007/s11117-010-0108-2.
  • [23] M. M. Czerwińska, A. Kamińska, and D. Kubiak, Exposed and strongly exposed points in symmetric spaces of measurable operators, Houston J. Math. 39 (2013), no. 3, 823-852.
  • [24] W. J. Davis, D. J. H. Garling, and N. Tomczak-Jaegermann, The complex convexity of quasinormed linear spaces, J. Funct. Anal. 55 (1984), no. 1,110-150, DOI 10.1016/0022-1236(84)90021-1.
  • [25] R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces, Longman Group UK Limited 1993.
  • [26] J. Diestel, Geometry of Banach Spaces - selected topics, Vol. 485, Berlin-New York 1975, Lectures Notes in Mathematics.
  • [27] S. J. Dilworth, Complex convexity and the geometry of Banach spaces, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 3, 495-506, DOI 10.1017/S0305004100064446.
  • [28] J. Dixmier, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France 81 (1953), 9-39.
  • [29] P. G. Dodds and T. K. Dodds, Some aspects of the theory of symmetric operator spaces, First International Conference in Abstract Algebra (Kruger Park, 1993), 1995, 47-89.
  • [30] P. G. Dodds, T. K. Dodds, P. N. Dowling, C. J. Lennard, and F. A. Sukochev, A uniform Kadec-Klee property for symmetric operator spaces, Math. Proc. Camb. Phil. Soc. 118 (1995), 487-502, DOI 10.1017/S0305004100073813.
  • [31] P. G. Dodds and B. de Pagter, Properties (u) and (V*) of Pelczynski in spaces of T-measurable operators, Positivity 15 (2011), 571-594, DOI 10.1007/s11117-011-0127-7.
  • [32] P. G. Dodds and B. de Pagter, Normed Köthe spaces: A non-commutative view-point, Indag. Math 25 (2014), 206-249, DOI 10.1016/j.indag.2013.01.009.
  • [33] P. G. Dodds, T. K. Dodds, and B. de Pagter, A general Markus inequality, Miniconference on Operators in Analysis (Sydney, 1989), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 24, Austral. Nat. Univ., Canberra, 1990.
  • [34] P. G. Dodds, T. K. Dodds, and B. de Pagter, Noncommutative Banach function spaces, Math. Z. 201 (1989), no. 4, 583-597, DOI 10.1007/BF01215160.
  • [35] P. G. Dodds, T. K. Dodds, and B. de Pagter, Noncommutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993), no. 2, 717-750, DOI 10.2307/2154295.
  • [36] P. G. Dodds, T. K. Dodds, and F. A. Sukochev, Lifting of Kadec-Klee properties to symmetric spaces of measurable operators, Proc. Amer. Math. Soc. 125 (1997), no. 5, 1457-1467, DOI 10.1090/S0002-9939-97-03731-3.
  • [37] P. G. Dodds, T. K. Dodds, andF. A. Sukochev, Banach-Saks properties in symmetric spaces of measurable operators, Studia Math. 178 (2007), no. 2,125-166, DOI 10.4064/sm178-2-2.
  • [38] P. G. Dodds, T. K. Dodds, and F. A. Sukochev, On p-convexity and q-concavity in noncommutative symmetric spaces, Integr. Equ. Oper. Theory 78 (2014), no. 1, 91-114, DOI 10.1007/s00020-013-2082-0.
  • [39] P. G. Dodds, B. de Pagter, and F. A. Sukochev, Theory of Noncommutative Integration; unpublished monograph; to appear.
  • [40] P. G. Dodds, E. M. Semenov, and F. A. Sukochev, The Banach-Saks property in rearrangement invariant spaces, Studia Math. 162 (2004), no. 3, 263-294, DOI 10.4064/sm162-3-6.
  • [41] B. de Pagter, Non-commutative Banach function spaces, Positivity, Trends Math., Birkhäuser, Basel, 2007, 197-227, DOI 10.1007/978-3-7643-8478-4_7.
  • [42] T. Fack, Type and cotype inequalities for noncommutative Lp -spaces, J. Operator Theory 17 (1987), no. 2, 255-279.
  • [43] T. Fack and H. Kosaki, Generalized s-numbers of T-measurable operators, Pacific J. Math. 123 (1986), no. 2, 269-300.
  • [44] C. Finet, Uniform convexity properties of norms on a super-reflexive Banach space, Israel J. Math. 53 (1986), no. 1, 81-92, DOI 10.1007/BF02772671.
  • [45] D. J. H. Garling, Stable Banach spaces, random measures and Orlicz function spaces, Probability measures on groups (Oberwolfach, 1981), Lecture Notes in Math., vol. 928, Springer, Berlin-New York, 1982, 121-175.
  • [46] D. J. H. Garling and N. Tomczak-Jaegermann, The cotype and uniform convexity of unitary ideals, Israel J. Math. 45 (1983), no. 2-3,175-197, DOI 10.1007/BF02774015.
  • [47] J. Globevnik, On complex strict and uniform convexity, Proc. Amer. Math. Soc. 47 (1975), 175-178, DOI 10.2307/2040227.
  • [48] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, American Mathematical Society, Providence 1969.
  • [49] A. Grothendieck, Réarrangements de fonctions et inégalités de convexité dans les algèbres de von Neumann munies d’une trace, Séminaire Bourbaki, Vol. 3, Soc. Math. France, Paris, 1995, Exp. No. 113,127-139.
  • [50] S. Guerre-Delabrière, Classical Sequences in Banach Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 166, Marcel Dekker, Inc., New York 1992.
  • [51] S. Guerre and J. T. Lapresté, Quelques propriétés des espaces de Banach stables, Israel J. Math. 39 (1981), no. 3, 247-254, DOI 10.1007/BF02760853.
  • [52] U. Haagerup, Non-commutative integration theory, Lecture given at the Symposium in Pure Mathematics of the American Mathematical Society, Queens University, Kingston, Ontario 1980.
  • [53] J. R. Holub, On the metric geometry of ideals of operators on Hilbert space, Math. Ann. 201 (1973), 157-163, DOI 10.1007/BF01359793.
  • [54] H. Hudzik and A. Narloch, Relationships between monotonicity and complex rotundity properties with some consequences, Math. Scand. 96 (2005), no. 2, 289-306, DOI 10.7146/math.scand.a-14958.
  • [55] Y. P. Hsu, The lifting of the UKK property from E to CE, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2695-2703, DOI 10.2307/2160563.
  • [56] W. B. Johnson and Compositio Math., On quotients of Lp which are quotients of lp 34 (1977), no. 1, 69-89.
  • [57] M. Jungeand J. Parcet, Rosenthal’s theorem for subspaces of noncommutative Lp, Duke Math. J. 141 (2008), no. 1, 75-122, DOI 10.1215/S0012-7094-08-14112-2.
  • [58] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. vol. I, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence, RI 1997.
  • [59] N. J. Kalton and F. A. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81-121, DOI 10.1515/CRELLE.2008.059.
  • [60] A. Kamińska and H. J. Lee, Banach-Saks properties of Musielak-Orlicz and Nakano sequence lattices, Proc. Amer. Math. Soc. 142 (2014), no. 2, 547-558, DOI 10.1090/S0002-9939-2013-11842-3.
  • [61] A. Kamińska, H. J. Lee, and G. Lewicki, Extreme and smooth points in Lorentz and Marcinkiewicz spaces with applications to contractive projections, Rocky Mountain J. Math. 39 (2009), no. 5, 1533-1572, DOI 10.1216/RMJ-2009-39-5-1533.
  • [62] A. Kamińska and A. Parrish, Note on extreme points in Marcinkiewicz function spaces, Banach J. Math. Anal. 4 (2010), no. 1,1-12, DOI 10.15352/bjma/1272374667.
  • [63] A. Kamińska and Y. Raynaud, Isomorphic copies in the lattice E and its symmetrization E(ł) with applications to Orlicz-Lorentz spaces, J. Funct. Analysis 257 (2009), no. 1, 271-331, DOI 10.1016/j.jfa.2009.02.016.
  • [64] L. V. Kantorovich and G. P. Akilov, Functional Analysis, second ed., Pergamon Press and “Nauka” 1982.
  • [65] H. Knaust, Orlicz sequence spaces of Banach-Saks type, Arch. Math. 59 (1992), no. 6, 562-565, DOI 10.1007/BF01194848.
  • [66] H. Knaust and E. Odell, Weakly null sequences with upper lp-estimates 1991, 85-107, DOI 10.1007/BFb0090216.
  • [67] S. G. Krem, Yu. I. Petunin, and E. M. Semënov, Interpolation of Linear Operators, Translations of Mathematical Monographs, vol. 54, American Mathematical Society, Providence, R.1.1982.
  • [68] J. L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), no. 4, 273-295, DOI 10.1007/BF02761674.
  • [69] H. J. Lee, Complex convexity and monotonicity in quasi-Banach lattices, Israel J. Math. 159 (2007), 57-91, DOI 10.1007/s11856-007-0038-2.
  • [70] C. Leranoz, A remark on complex convexity, Canad. Math. Bull. 31 (1988), no. 3, 322-324, DOI 10.4153/CMB-1988-046-9.
  • [71] P. K. Lin, Köthe-Bochner Function Spaces, Birkhäuser Boston Inc., Boston, MA 2004.
  • [72] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, Berlin-New York 1977.
  • [73] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin-New York 1979.
  • [74] S. Lord, F. Sukochev, and D. Zanin, Singular Traces. Theory and Applications, De Gruyter Studies in Mathematics, vol. 46, De Gruyter, Berlin 2013.
  • [75] F. Lust-Piquard and F. A. Sukochev, p-Banach-Saks properties in symmetric operator spaces, Illinois J. Math. 51 (2007), no. 4, 1207-1229.
  • [76] K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Cambridge Philos. Soc. 96 (1984), no. 3, 483-493, DOI 10.1017/S0305004100062411.
  • [77] C. A. McCarthy, cp, Israel J. Math. 5 (1967), 249-271, DOI 10.1007/BF02771613.
  • [78] R. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics, vol. 183, Springer-Verlag, York, New 1998, DOI 10.1007/978-1-4612-0603-3.
  • [79] A. Medzitov, On separability of non-commutative symmetric spaces, 38-43.
  • [80] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-116.
  • [81] J. L. Marcolino Nhany, La stabilité des espaces Lp non-commutatifs, Math. Scand. 81 (1997), no. 2,212-218, DOI 10.7146/math.scand.a-12875.
  • [82] J. von Neumann, Collected works, vol. IV: Continuous geometry and other topics (A. H. Taub, ed.), Pergamon Press, Oxford 1962.
  • [83] V. I. Ovcinnikov, Symmetric spaces of measurable operators, Dokl. Akad. Nauk SSSR 191 (1970), 769-771.
  • [84] V. I. Ovcinnikov, Symmetric spaces of measurable operators, Voronez. Gos. Univ. Trudy Naucn.-Issled. Inst. Mat. VGU 3 (1971), 88-107.
  • [85] A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser Boston Inc., Boston, MA 2007.
  • [86] G. Pisier and Q. Xu, Non-commutative Lp-spaces, Handbook of the Geometry of Banach Spaces. vol. 2, North-Holland, Amsterdam, 2003, 1459-1517, DOI 10.1016/S1874-5849(03)80041-4.
  • [87] S. A. Rakov, The Banach-Saks property for a Banach space, Mat. Zametki 26 (1979), no. 6, 823-834, 972.
  • [88] S. A. Rakov, The Banach-Saks exponent of some Banach spaces of sequences, Mat. Zametki 32 (1982), 613-625; English transl., Math. Notes 32 (1982), 791-797.
  • [89] J. V. Ryff, Extreme points of some convex subsets of L'(0,1), Proc. Amer. Math. Soc. 18 (1967), 1026-1034, DOI 10.2307/2035788.
  • [90] Y. Raynaud, Deux nouveaux exemples d’espaces de Banach stables, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 15, 715-717.
  • [91] Y. Raynaud, Stabilité des espaces CE, Séminaire de Géométrie des Espaces de Banach, Univ. Paris 7 1982.
  • [92] R. Schatten, Norm Ideals of Completely Continuous Operators, Springer-Verlag 1960.
  • [93] I. Segal, A non-commutative extension of abstract integration, Ann. Math 57 (1953), 401-457, DOI 10.2307/1969729.
  • [94] B. Simon, Trace Ideals and Their Applications, second ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI 2005.
  • [95] W. F. Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90 (1959), 15-56.
  • [96] F. A. Sukochev, Symmetric spaces of measurable operators on finite von Neumann algebras, Tashkent State University 1988; Ph.D. thesis.
  • [97] F. A. Sukochev, The MLUR property in symmetric (KB)-spaces (Russian), Mat. Zametki 52 (1992), no. 6, 149-151; English transl., Math. Notes 52 (1992), no. 5-6, 1280-1282.
  • [98] F. A. Sukochev, On the uniform Kadec-Klee property with respect to convergence in measure, J. Austral. Math. Soc. Ser. A 59 (1995), no. 3, 343-352.
  • [99] F. A. Sukochev, Linear-topological classification of separable L p -spaces associated with von Neumann algebras of type I, Israel J. Math. 115 (2000), 137-156, DOI 10.1007/BF02810584.
  • [100] F. A. Sukochev, Completeness of quasi-normed symmetric operator spaces, Indag. Math. 25 (2014), no. 2, 376-388, DOI 10.1016/j.indag.2012.05.007.
  • [101] F. A. Sukochev and V. I. Chilin, The triangle inequality for operators that are measurable with respect to Hardy-Littlewood order, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 4 (1988), 44-50.
  • [102] F. A. Sukochev and V. I. Chilin, Convergence in measure in regular noncommutative symmetric spaces, Izv. Vyssh. Uchebn. Zaved. Mat. 9 (1990), 63-70; English transl., Soviet Math. (Iz. VUZ) 34 (1990), no. 9, 78-87.
  • [103] F. A. Sukochev and V. I. Chilin, Symmetric spaces over semifinite von Neumann algebras, Dokl. Akad. Nauk SSSR 313 (1990), no. 4, 811-815; English transl., Soviet Math. Dokl. 42 (1991), no. 1, 97-101.
  • [104] M. Takesaki, Theory of Operator Algebras. I, Springer-Verlag, New York 1979.
  • [105] E. Thorp and R. Whitley, The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Amer. Math. Soc. 18 (1967), 640-646, DOI 10.2307/2035432.
  • [106] N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes Sp (1≤p <∞), Studia Math. 50 (1974), 163-182.
  • [107] N. Tomczak-Jaegermann, Uniform convexity of unitary ideal, Israel J. Math. 48 (1984), no. 2-3, 249-254, DOI 10.1007/BF02761168.
  • [108] T. Wang and Y. Teng, Complex locally uniform rotundity of Musielak-Orlicz spaces, Sci. China Ser. A 43 (2000), no. 2, 113-121, DOI 10.1007/BF02876036.
  • [109] Q. Xu, Convexité uniforme des espaces symétriques d’opérateurs mesurables, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 5, 251-254.
  • [110] Q. Xu, Analytic functions with values in lattices and symmetric spaces of measurable operators, Math. Proc. Cambridge Philos. Soc. 109 (1991), 541-563, DOI 10.1017/S030500410006998X.
  • [111] Q. Xu, Radon-Nikodym property in symmetric spaces of measurable operators, Proc. Amer. Math. Soc. 115 (1992), no. 2, 329-335, DOI 10.2307/2159268.
  • [112] F. J. Yeadon, Convergence of measurable operators, Math. Proc. Cambridge Philos. Soc. 74 (1973), 257-268.
  • [113] F. J. Yeadon, Non-commutative Lp-spaces, Math. Proc. Cambridge Philos. Soc. 77 (1975), 91-102, DOI 10.1017/S0305004100049434.
  • [114] F. J. Yeadon, Ergodic theorems for semifinite von Neumann algebras: II, Math. Proc. Cambridge Philos. Soc. 88 (1980), no. 1, 135-147, DOI 10.1017/S0305004100057418.
  • [115] A. C. Zaanen, Integration, North-Holland Publishing Co., Amsterdam 1967.
  • [116] L. Zheng and Y. D. Zhuang, K-rotund complex normed linear spaces, J. Math. Anal. Appl. 146 (1990), no. 2, 540-545, DOI 10.1016/0022-247X(90)90323-8.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b97db6f-b436-486d-87c7-b17c734367c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.