PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of MPPM FSO transmission over Gamma–Chi-square strong atmospheric turbulence

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, performance analysis of free space optical (FSO) system operating in conditions of strong atmospheric turbulence over Gamma–Chi-square turbulence model, has been carried out. We have observed reception over multi-pulse pulse-position (MPPM) modulation format for the case of strong atmospheric turbulence conditions modeled with Gamma–Chi-square turbulence model and have compared it with turbulence modeling distributions such are: Gamma–Gamma distribution, K-distribution, negative exponential distribution, log–normal distribution. First, we have provided closed-form analytical expressions for average bit error rate (ABER) at the reception for each observed case and then based on them, we have obtained numerical and Monte Carlo simulation results in order to observe turbulence level impact on system performance.
Czasopismo
Rocznik
Strony
111--126
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Faculty of Technical Sciences, University of Pristina in Kosovska Mitrovica, Knjaza Milosa 7, 38220 Kosovska Mitrovica, Serbia
  • Faculty of Technical Sciences, University of Pristina in Kosovska Mitrovica, Knjaza Milosa 7, 38220 Kosovska Mitrovica, Serbia
autor
  • Faculty of Sciences and Mathematics, University of Pristina in Kosovska Mitrovica, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia
  • School of Informatics and Computing, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia
  • Valjevo Business School of Applied Studies, Western Serbia Academy of Applied Studies, Trg Svetog Save 34, 31000 Uzice, Serbia
Bibliografia
  • [1] HENNIGER H., WILFERT O., An introduction to free-space optical communications, Radioengineering 19(2), 2010: 203–212.
  • [2] STEFANOVIC C., MORALES-CÉSPEDES M., ARMADA A.G., Performance analysis of RIS-assisted FSO communications over Fisher–Snedecor F turbulence channels, Applied Sciences 11(21), 2021: 10149, DOI: 10.3390/app112110149.
  • [3] BADARNEH O.S., DERBAS R., ALMEHMADI F.S., EL BOUANANI F., MUHAIDAT S., Performance analysis of FSO communications over F turbulence channels with pointing errors, IEEE Communications Letters 25(3), 2021: 926–930, DOI: 10.1109/lcomm.2020.3042489.
  • [4] BABIC R., Signal Analysis, Akademska Misao, Belgrade, Serbia, 2000.
  • [5] HASAN O., TAHA M., Optimized FSO system performance over atmospheric turbulence channels with pointing error and weather conditions, Radioengineering 25(4), 2016: 658–665, DOI: 10.13164/re.2016.0658.
  • [6] BALAJI K.A., PRABU K., BER analysis of relay assisted PSK with OFDM ROFSO system over Malaga distribution including pointing errors under various weather conditions, Optics Communications 426, 2018: 187–193, DOI: 10.1016/j.optcom.2018.05.027.
  • [7] FADHIL H.A., AMPHAWAN A., SHAMSUDDIN H.A. B., ABD T.H., AL-KHAFAJI H.M. R., ALJUNID S.A., AHMED N., Optimization of free space optics parameters: An optimum solution for bad weather conditions, Optik 124(19), 2013: 3969–3973, DOI: 10.1016/j.ijleo.2012.11.059.
  • [8] NDJIONGUE A.R., NGATCHED T., DOBRE O., ARMADA A.G., HAAS H., Analysis of RIS-based terrestrial-FSO link over G-G turbulence with distance and jitter ratios, Journal of Lightwave Technology 39(21), 2021: 6746–6758, DOI: 10.1109/JLT.2021.3108532.
  • [9] MALIK S., SAHU P.K., Performance analysis of free space optical communication system using different modulation schemes over weak to strong atmospheric turbulence channels, [In] Optical and Wireless Technologies, V. Janyani, G. Singh, M. Tiwari, A. d’Alessandro [Eds.], Lecture Notes in Electrical Engineering, Vol. 546, Springer, Singapore, 2019: 387–399, DOI: 10.1007/978-981-13-6159-3_41.
  • [10] PEPPAS K.P., MATHIOPOULOS P.T., Free space optical communication with spatial modulation and coherent detection over H-K atmospheric turbulence channels, Journal of Lightwave Technology 33(20), 2015: 4221–4232, DOI: 10.1109/JLT.2015.2465385.
  • [11] ARYA S., CHUNG Y.H., Spectrum sensing for free space optical communications in strong atmospheric turbulence channel, Optics Communications 445, 2019: 24–28, DOI: 10.1016/j.optcom.2019.04.009.
  • [12] SANDALIDIS H.G., TSIFTSIS T.A., KARAGIANNIDIS G.K., Optical wireless communications with heterodyne detection over turbulence channels with pointing errors, Journal of Lightwave Technology 27(20), 2009: 4440–4445, DOI: 10.1109/jlt.2009.2024169.
  • [13] YANG L., SONG X., CHENG J., HOLZMAN J.F., Free-space optical communications over lognormal fading channels using OOK with finite extinction ratios, IEEE Access 4, 2016: 574–584, DOI: 10.1109/access.2016.2520936.
  • [14] NISTAZAKIS H.E., ASSIMAKOPOULOS V.D., TOMBRAS G.S., Performance estimation of free space optical links over negative exponential atmospheric turbulence channels, Optik 122(24), 2011: 2191–2194, DOI: 10.1016/j.ijleo.2011.01.013.
  • [15] ANBARASI K., HEMANTH C., SANGEETHA R.G., A review on channel models in free space optical communication systems, Optics & Laser Technology 97, 2017: 161–171, DOI: 10.1016/j.optlastec.2017.06.018.
  • [16] PEPPAS K.P., STASSINAKIS A.N., TOPALIS G.K., NISTAZAKIS H.E., TOMBRAS G.S., Average capacity of optical wireless communication systems over I-K atmospheric turbulence channels, Journal of Optical Communications and Networking 4(12), 2012: 1026–1032, DOI: 10.1364/jocn.4.001026.
  • [17] ZHOU H., XIE W., ZHANG L., BAI Y., WEI W., DONG Y., Performance analysis of FSO coherent BPSK systems over Rician turbulence channel with pointing errors, Optics Express 27(19), 2019: 27062–27075, DOI: 10.1364/oe.27.027062.
  • [18] AHMED M.M., AHMMED K.T., HOSSAN A., HOSSAIN M.R., Performance of free space optical communication systems over exponentiated Weibull atmospheric turbulence channel for PPM and its derivatives, Optik 127(20), 2016: 9647–9657, DOI: 10.1016/j.ijleo.2016.07.036.
  • [19] PRABU K., KUMAR D. S., SRINIVAS T., Performance analysis of FSO links under strong atmospheric turbulence conditions using various modulation schemes, Optik 125(19), 2014: 5573–5581, DOI: 10.1016/j.ijleo.2014.07.028.
  • [20] SINGH H., SAPPAL A.S., Analytic and simulative comparison of turbulent FSO system with different modulation techniques, Optics & Laser Technology 114, 2019: 49–59, DOI: 10.1016/j.optlastec.2019.01.013.
  • [21] BADAR N., JHA R.K., Performance comparison of various modulation schemes over free space optical (FSO) link employing Gamma–Gamma fading model, Optical and Quantum Electronics 49(5), 2017: 192, DOI: 10.1007/s11082-017-1025-4.
  • [22] ISMAIL T., LEITGEB E., GHASSEMLOOY Z., AL-NAHHAL M., Performance improvement of FSO system using multi-pulse pulse position modulation and SIMO under atmospheric turbulence conditions and with pointing errors, IET Networks 7(4), 2018: 165–172, DOI: 10.1049/iet-net.2017.0203.
  • [23] KHALLAF H.S., SHALABY H.M.H., GARRIDO-BALSELLS J.M., SAMPEI S., Performance analysis of a hybrid QAM-MPPM technique over turbulence-free and Gamma–Gamma free-space optical channels, ournal of Optical Communications and Networking 9(2), 2017: 161–171, DOI: 10.1364/jocn.9.000161.
  • [24] WANG P., YANG B., GUO L., SHANG T., SER performance analysis of MPPM FSO system with three decision thresholds over exponentiated Weibull fading channels, Optics Communications 354, 2015: 1–8, DOI: 10.1016/j.optcom.2015.05.039.
  • [25] TODOROVIĆ J., SPALEVIĆ P., PANIĆ S., MILOSAVLJEVIĆ B., GLIGORIJEVIĆ M., FSO system performance analysis based on novel Gamma–Chi-square irradiance PDF model, Optica Applicata 51(3), 2021: 335–348, DOI: 10.37190/oa210303.
  • [26] GRADSHTEYN I.S., RYZHIK I.M., Table of Integrals, Series, and Products, 7th ed., Elsevier Academic Press, USA, 2007.
  • [27] BELMONTE A., KAHN J.M., Performance of synchronous optical receivers using atmospheric compensation techniques, Optics Express 16(18), 2008: 14151–14162, DOI: 10.1364/oe.16.014151.
  • [28] ESCRIBANO F. J., WAGEMAKERS A., Performance analysis of QAM-MPPM in turbulence-free FSO channels: Accurate derivations and practical approximations, IEEE Systems Journal 15(2), 2021: 1753–1763, DOI: 10.1109/jsyst.2020.2986680.
  • [29] BALAJI K.A., PRABU K., Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors, Optics Communications 410, 2018: 643–651, DOI: 10.1016/j.optcom.2017.11.006.
  • [30] The Wolfarm Functions Site: Erfc functions. [Online] Available: http://functions.wolfram.com/PDF/Erfc.pdf (accessed March 2022).
  • [31] The Wolfarm Functions Site: MeijerG functions. [Online] Available: http://functions.wolfram.com/PDF/MeijerG.pdf (accessed March 2022).
  • [32] PRUDNIKOV A.P., BRYCHKOV Y.A., MARICHEV O.I., Integral and Series, 2nd Ed., Fizmatlit, Moscow, Russia, 2003.
  • [33] The Wolfarm Functions Site: Erfc functions. [Online] Available: http://functions.wolfram.com/PDF/Exp.pdf (accessed March 2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b95305d-5d5f-4949-86c2-24b21135bb3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.