Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Additive Manufacturing (AM) is an industrial process that involves creating three-dimensional (3D) parts based on computer-aided design (CAD) models. Various methods and techniques have been developed in the recent decade to enhance this industry. This research observes the influence of 3D printing parameters using fused deposition modeling (FDM) on the uniaxial compressive strength (UCS) of polylactic acid (PLA) specimens. This is precisely to study the effects of infill density, infill pattern, and layer thickness and determine the optimal parameters. The compression test samples have been designed based on ASTM D695 standards and manufactured using a Creality Ender-5 Pro 3D printer. Then, a Taguchi design of experiments method has been used, and nine experiments have been conducted to evaluate the effects of the mentioned parameters. Also, analysis of variance (ANOVA) declared that the infill density is the most noticeable parameter with a contribution of 83.56% to the variation in UCS. On the other hands, both infill pattern and layer thickness had minimal impact. However, the ideal configuration to earn maximum UCS value has been recorded as 80% infill density, a gyroid infill pattern, and a 0.3 mm layer thickness based on ANOVA analysis. Furthermore, an artificial neural network (ANN) model has been developed to enhance predictive capabilities. This is by training a three-layer architecture with inputs of infill density, infill pattern, and layer thickness. It is confirmed by two calculation outcomes that the ANN has performed high predictive accuracy: a regression coefficient (R) of 0.9974 and slight deviation between experimental and predicted UCS values. These results show the considerable role of infill density in increasing the compressive strength, as well as approve the ANN as a trusted tool for predicting mechanical properties of 3D-printed components. This research presents profound investigation for optimizing FDM parameters to enhance the mechanical performance of 3D-printed parts.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
73--83
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
autor
- Production Engineering and Metallurgy Department, University of Technology-Iraq, Iraq
autor
- Production Engineering and Metallurgy Department, University of Technology-Iraq, Iraq
autor
- Production Engineering and Metallurgy Department, University of Technology-Iraq, Iraq
Bibliografia
- 1. Pietras D., Zbyszyński W., and Sadowski T. A 3D printing method of cement-based FGM composites containing granulated cork, polypropylene fibres, and a polyethylene net interlayer, Materials, Jun. 2023; 16(12): 4235, https://doi.org/10.3390/ma16124235
- 2. Fisher T., Almeida Jr J. H. S., Falzon B. G., and Kazancı Z. Tension and compression properties of 3D-printed composites: Print orientation and strain rate effects, Polymers, Mar. 2023; 15(7): 1708, https://doi.org/10.3390/polym15071708
- 3. Hossei A. Optimizing print parameters for maximizing tensile strength of additively manufactured polymers through evolutionary algorithms, https:// doi.org/10.7939/r3-e8k0-3291
- 4. Ngo T. D., Kashani A., Imbalzano G., Nguyen K. T. Q., and Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, Jun. 2018; 143: 172–196, https://doi.org/10.1016/j. compositesb.2018.02.012
- 5. Abdulridha H. H., Abbas T. F., and Bedan A. S. Investigate the effect of chemical post processing on the surface roughness of fused deposition modeling printed parts, Adv. Sci. Technol. Res. J., Apr. 2024; 18(2): 47–60, https://doi. org/10.12913/22998624/183528
- 6. Shahrubudin N., Lee T. C., and Ramlan R. An overview on 3D printing technology: Technological, materials, and applications, Procedia Manufacturing, 2019; 35: 1286–1296, https://doi.org/10.1016/j. promfg.2019.06.089
- 7. Qin D., Sang L., Zhang Z., Lai S., and Zhao Y. Compression performance and deformation behavior of 3D-printed PLA-based lattice structures, Polymers, Mar. 2022; 14(5), 1062, https://doi.org/10.3390/ polym14051062
- 8. Chandran V., Kalman J., Fayazbakhsh K., and Bougherara H. A comparative study of the tensile properties of compression molded and 3D printed PLA specimens in dry and water saturated conditions, J Mech Sci Technol, May 2021; 35(5): 1977– 1985, https://doi.org/10.1007/s12206-021-0415-5
- 9. Brischetto S. and Torre R. Tensile and compressive behavior in the experimental tests for PLA specimens produced via fused deposition modelling technique, J. Compos. Sci., Sep. 2020; 4(3): 140, https:// doi.org/10.3390/jcs4030140
- 10. Hamed M. A. and Abbas T. F. The impact of FDM process parameters on the compression strength of 3D printed PLA filaments for dental applications, Adv. Sci. Technol. Res. J., Aug. 2023; 17(4): 121– 129, https://doi.org/10.12913/22998624/169468
- 11. Sultana J., Rahman M. M., Wang Y., Ahmed A., and Xiaohu C. Influences of 3D printing parameters on the mechanical properties of wood PLA filament: an experimental analysis by Taguchi method, Prog Addit Manuf, Aug. 2024; 9(4): 1239–1251, https:// doi.org/10.1007/s40964-023-00516-6
- 12. Farias D., Oliveira D., Quaresma L., Sousa M., Pinheiro M., Angélica R., Da Paz S., Dos Reis M. Effect of infill parameters and nano-rein forcement on compression performance of 3D printed polylactic acid, Feb. 5, 2024, Chemistry and Materials Science. https://doi.org/10.20944/ preprints202402.0299.v1
- 13. Abdulridha H. H., Abbas T. F., and Bedan A. S. Investigate the effect of chemical post processing on the surface roughness of fused deposition modeling printed parts, Adv. Sci. Technol. Res. J., Apr. 2024; 18(2): 47–60, https://doi. org/10.12913/22998624/183528
- 14. Tunçel O. Optimization of Charpy impact strength of tough PLA samples produced by 3D printing using the Taguchi method, Polymers, Feb. 2024; 16(4): 459, https://doi.org/10.3390/polym16040459
- 15. Abdulridha H. H., Abbas T. F., and Bedan A. S. Predicting mechanical strength and optimized parameters in FDM-printed polylactic acid parts via artificial neural networks and desirability analysis, Management Systems in Production Engineering, Aug. 2024; 32(3): 428–437, https://doi.org/10.2478/mspe-2024-0040
- 16. Tian Y., Chen C.X., Xu X., et al. A review of 3D printing in dentistry: Technologies, affecting factors, and applications, Scanning, Jul. 2021; 2021: 1–19, https://doi.org/10.1155/2021/9950131
- 17. Song Y., Li Y., Song W., Yee K., Lee K.-Y., and Tagarielli V. L. Measurements of the mechanical response of unidirectional 3D-printed PLA, Materials & Design, Jun. 2017; 123: 154–164, https://doi. org/10.1016/j.matdes.2017.03.051
- 18. Girish Kumar P. V. R., Devaki Devi K. Optimizing mechanical properties of virgin and recycled PLA components using Anova and neural networks, Math. models, eng., Mar. 2024; 10(1): 1–10, https:// doi.org/10.21595/mme.2023.23630
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b94ef03-37f6-4280-86d9-86850ab87e40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.