PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterizations of entire solutions for the system of Fermat-type binomial and trinomial shift equations in ℂn#

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we investigate the existence and the precise form of finite-order transcendental entire solutions of some system of Fermat-type quadratic binomial and trinomial shift equations in ℂn . Our results are the generalizations of the results of [H. Y. Xu, S. Y. Liu, and Q. P. Li, Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl. 483 (2020), 123641, 1–22, DOI: https://doi.org/10.1016/j.jmaa.2019.123641.] and [H. Y. Xu and Y. Y. Jiang, Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables, RACSAM 116 (2022), 8, DOI: https://doi.org/10.1007/s13398-021-01154-9.] .] to a large extent. Most interestingly, as a consequence of our main result, we have shown that the system of quadratic trinomial shift equation has no solution when it reduces to a system of quadratic trinomial difference equation. In addition, some examples relevant to the content of the article have been exhibited.
Wydawca
Rocznik
Strony
art. no. 20230104
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Department of Mathematics, Malda College - 732101, West Bengal, India
  • Ghani Khan Choudhury Institute of Engineering and Technology, Narayanpur, Malda 732141, West Bengal, India
  • Department of Mathematics, University of Kalyani, West Bengal 741235, India
Bibliografia
  • [1] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebra, Ann. Math. 141 (1995), 553–572.
  • [2] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math. 141 (1995), 443–551.
  • [3] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
  • [4] P. Montel, Lecons sur les familles de nomales fonctions analytiques et leurs applications, Gauthier-Viuars Paris, (1927), 135–136.
  • [5] G. Iyer, On certain functional equations, J. Indian. Math. Soc. 3 (1939), 312–315.
  • [6] F. Gross, On the equation + =f z g z 1n n( ) ( ) , Bull. Amer. Math. Soc. 72 (1966), 86–88.
  • [7] T. B. Cao, The growth, oscillation and fixed points of solutions of complex linear differential equations in the unit disc, J. Math. Anal. Appl. 352 (2009), no. 2, 739–748, DOI: https://doi.org/10.1016/j.jmaa.2008.11.033.
  • [8] G. G. Gundersen, K. Ishizaki, and N. Kimura, Restrictions on meromorphic solutions of Fermat type equations, Proc. Edinburgh Math. Soc. 63 (2020), no. 3 654–665, DOI: https://doi.org/10.1017/S001309152000005X.
  • [9] P. C. Hu and Q. Wang, On meromorphic solutions of functional equations of Fermat type, Bull. Malays. Math. Sci. Soc. 42 (2019), 2497–2515, DOI: https://doi.org/10.1007/s40840-018-0613-1.
  • [10] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/Newyork, 1993.
  • [11] C. C. Yang, A generalization of a theorem of P. Montel on entire functions, Proc. Amer. Math. Soc. 26 (1970), 332–334.
  • [12] L. Z. Yang and J. L. Zhang, Non-existence of meromorphic solutions of Fermat type functional equations, Aequationes Math. 76 (2008), 140–150.
  • [13] H. Y. Yi and L. Z. Yang, On meromorphic solutions of Fermat type functional equations, Sci. China Ser. A 41(2011), 907–932.
  • [14] C. C. Yang and P. Li, On the transcendental solutions of a certain type of non-linear differential equations, Arch. Math. 82 (2004), 442–448.
  • [15] Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of +f z η( ) and difference equations in the complex plane, Ramanujan J. 16 (2008), 105–129, DOI: https://doi.org/10.1007/s11139-007-9101-1.
  • [16] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), 477–487.
  • [17] G. Dang and J. Cai, Entire solutions of the second-order Fermat-type differential-difference equation, J. Math. 2020 (2020), Article ID 4871812, DOI: https://doi.org/10.1155/2020/4871812.
  • [18] R. G. Halburd and R. J. Korhonen, Finite-order meromorphic solutions and the discrete Painleve equations, Proc. Lond. Math. Soc. 94 (2007), no. 2, 443–474.
  • [19] P. Li and C. C. Yang, On the nonexistence of entire solutions of certain type of nonlinear differential equations, J. Math. Anal. Appl. 320 (2006), 827–835.
  • [20] L. W. Liao, C. C. Yang, and J. J. Zhang, On meromorphic solutions of certain type of non-linear differential equations, Ann. Acad. Sci. Fenn. Math. 38 (2013), 581–593.
  • [21] K. Liu and X. J. Dong, Fermat type differential and difference equations, Electron. J. Differential Equations 2015 (2015), no. 159, 1–10.
  • [22] T. B. Cao and R. J. Korhonen, A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables, J. Math. Anal. Appl. 444 (2016), no. 2, 1114–1132, DOI: https://doi.org/10.1016/j.jmaa.2016.06.050.
  • [23] T. B. Cao and L. Xu, Logarithmic difference lemma in several complex variables and partial difference equations, Ann. Math. Pure Appl. 199 (2020), 767–794, DOI: https://doi.org/10.1007/s10231-019-00899-w.
  • [24] R. J. Korhonen, A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theory 12 (2012), no. 1, 343–361.
  • [25] K. Liu, T. B. Cao, and H. Z. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math. 99 (2012), 147–155.
  • [26] L. Xu and T. B. Cao, Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math. 15 (2018), 1–14.
  • [27] X.M. Zheng and X.Y. Xu, Entire solutions of some Fermat type functional equations concerning difference and partial differential in ℂ 2, Anal. Math. 48 (2022), 199–226, DOI: https://doi.org/10.1007/s10476-021-0113-7.
  • [28] G. Haldar, Solutions of Fermat-type partial differential difference equations in ℂ 2, Mediterr. J. Math. 20 (2023), 50, DOI: https://doi.org/10.1007/s00009-022-02180-6.
  • [29] G. Haldar, and M. B. Ahamed, Entire solutions of several quadratic binomial and trinomial partial differential-difference equations in ℂ 2, Anal. Math. Phys. 12 (2022), Article number 113, DOI: https:10.1007/s13324-022-00722-5.
  • [30] H. Y. Xu, and G. Haldar, Solutions of complex nonlinear functional equations including second order partial differential and difference equations in ℂ 2, Electron. J. Differential Equations. 43 (2023), 1–18.
  • [31] L. Y. Gao, Entire solutions of two types of systems of complex differential-difference equations, Acta Math. Sinica (Chin. Ser.) 59 (2016), 677–685.
  • [32] H. Y. Xu, S. Y. Liu, and Q. P. Li, Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl. 483 (2020), 123641, 1–22, DOI: https://doi.org/10.1016/j.jmaa.2019.123641.
  • [33] E. G. Saleeby, On complex analytic solutions of certain trinomial functional and partial differential equations, Aequationes Math. 85 (2013), 553–562.
  • [34] K. Liu and L. Z. Yang, A note on meromorphic solutions of Fermat types equations, An. Stiint. Univ. Al. I. Cuza Lasi Mat. (N. S.). 1 (2016), 317–325.
  • [35] H. Y. Xu, H. Li, and X. Ding, Entire and meromorphic solutions for systems of the differential difference equations, Demonstr. Math. 55 (2022), 676–694, DOI: https://doi.org/10.1515/dema-2022-0161.
  • [36] H. Y. Xu and Y. Y. Jiang, Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables, RACSAM 116 (2022), 8, DOI: https://doi.org/10.1007/s13398-021-01154-9.
  • [37] P. C. Hu, P. Li, and C. C Yang, Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.
  • [38] P. Lelong, Fonctionnelles Analytiques et Fonctions Entières (n variables), Presses de L'Universit´e de Montr´eal, 1968.
  • [39] L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Moscow: Nauka 1971 (Russian), American Mathematical Society, Providence, 1974.
  • [40] W. Stoll, Holomorphic Functions of Finite Order in Several Complex Variables, American Mathematical Society, Providence, 1974.
  • [41] G. Polya, On an integral function of an integral function, Math. Soc. 1 (1926), 12–15.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b908772-b7e6-4d52-9613-2589b0ca125b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.