PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The electric vehicle shortest path problem with time windows and prize collection

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
EN
Abstrakty
EN
The Electric Vehicle Shortest Path Problem (EVSPP) aims at finding the shortest path for an electric vehicle (EV) from a given origin to a given destination. During long trips, the limited autonomy of the EV may imply several stops for recharging its battery. We consider combining such stops with visiting points of interest near charging stations (CSs). Specifically, we address a version of the EVSPP in which the charging decisions are harmonized driver's preferences. The goal is to maximize the total gained score (assigned by the driver to the CSs), while respecting the time windows and the EV autonomy constraints. We define the problem as a MILP and develop a A* search heuristic to solve it. We evaluate the method by means of extensive computational experiments on realistic instances.
Rocznik
Tom
Strony
313--322
Opis fizyczny
Bibliogr. 14 poz., il., tab., wz.
Twórcy
  • Politecnico di Milano, Italy
autor
  • Politecnico di Milano, Italy
  • Politecnico di Milano, Italy
  • University of Coimbra, CMUC, INESC-Coimbra, Portugal
  • Politecnico di Milano, Italy
Bibliografia
  • 1. M. Baum, J. Dibbelt, A. Gemsa, D. Wagner, and T. Zündorf. Shortest feasible paths with charging stops for battery electric vehicles. In Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems, pages 1–10, 2015. https://doi.org/10.1145/2820783.2820826.
  • 2. M. Baum, J. Dibbelt, T. Pajor, J. Sauer, D. Wagner, and T. Zündorf. Energy-optimal routes for battery electric vehicles. Algorithmica, 82:1490–1546, 2020. https://doi.org/10.1007/s00453-019-00655-9.
  • 3. API ChargePrice.com. Open EV Data, Chargeprice.app API. https://github.com/chargeprice/open-ev-data. Accessed: 18-03-2022.
  • 4. S. Erdoğan and E. Miller-Hooks. A green vehicle routing problem. Transportation research part E: logistics and transportation review, 48:100–114, 2012. https://doi.org/10.1016/j.tre.2011.08.001.
  • 5. E. Fadda, D. Manerba, G. Cabodi, P. Camurati, and R. Tadei. Kpis for optimal location of charging stations for electric vehicles: the biella case-study. In 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), pages 123–126. IEEE, 2019. http://dx.doi.org/10.15439/2019F171.
  • 6. A. Froger, J. E. Mendoza, O. Jabali, and G. Laporte. Improved formulations and algorithmic components for the electric vehicle routing problem with nonlinear charging functions. Computers & Operations Research, 104:256–294, 2019. https://doi.org/10.1016/j.cor.2018.12.013.
  • 7. P. Kaeding. MapCustomizer. https://www.mapcustomizer.com. Accessed: 12-03-2022.
  • 8. D. Luxen and C. Vetter. Real-time routing with openstreetmap data. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’11, pages 513–516, New York, NY, USA, 2011. ACM. https://doi.org/10.1145/2093973. 2094062.
  • 9. A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas. A multi-space sampling heuristic for the green vehicle routing problem. Transportation Research Part C: Emerging Technologies, 70:113–128, 2016. https://doi.org/10.1016/j.trc.2015.09.009.
  • 10. A. Montoya, C. Guéret, J. E. Mendoza, and J. G. Villegas. The electric vehicle routing problem with nonlinear charging function. Transportation Research Part B: Methodological, 103:87–110, 2017. https://doi.org/10.1016/j.trb.2017.02.004.
  • 11. M. Schiffer, S. Stütz, and G. Walther. Electric commercial vehicles in mid-haul logistics networks. In Behaviour of Lithium-Ion Batteries in Electric Vehicles, pages 153–173. Springer, 2018. https://doi.org/10.1007/978-3-319-69950-9_7.
  • 12. M. Schneider, A. Stenger, and D. Goeke. The electric vehicle-routing problem with time windows and recharging stations. Transportation science, 48:500–520, 2014. https://doi.org/10.1287/trsc.2013.0490.
  • 13. T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins. Heuristics for multi-attribute vehicle routing problems: A survey and synthe sis. European Journal of Operational Research, 231:1–21, 2013. https://doi.org/10.1016/j.ejor.2013.02.053.
  • 14. T. Zündorf. Electric vehicle routing with realistic recharging models. Unpublished Master’s thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2014.
Uwagi
1. Track 6: 15th International Workshop on Computational Optimization
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b9081ec-663c-4a91-995a-ea6a74e9b8e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.