PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the buoyant sub-surface salinity maxima in the Gulf of Riga

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermohaline structure in the Gulf of Riga (GoR) was investigated by a multi-platform measurement campaign in summer 2015. Stratification of the water column was mainly controlled by the temperature while salinity had only a minor contribution. Buoyant salinity maxima with variable strength were observed in the intermediate layer of the Gulf of Riga. The salinity maxima were likely formed by a simultaneous upwelling–downwelling event at the two opposite sides of the Irbe strait. The inflowing salty water did not reach the deeper (> 35 m) parts of the gulf and, therefore, the near-bottom layer of the gulf remained isolated throughout the summer. Thus, the lateral water exchange regime in the near bottom layer of the Gulf of Riga is more complicated than it was thought previously. We suggest that the occurrence of this type of water exchange resulting in a buoyant inflow and lack of lateral transport into the near-bottom layers might contribute to the rapid seasonal oxygen decline in the Gulf of Riga.
Słowa kluczowe
Czasopismo
Rocznik
Strony
113--128
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
autor
  • Marine Systems Institute, Tallinn University of Technology, Tallinn, Estonia
autor
  • Marine Systems Institute, Tallinn University of Technology, Tallinn, Estonia
  • Latvian Institute of Aquatic Ecology, Riga, Latvia
autor
  • Marine Systems Institute, Tallinn University of Technology, Tallinn, Estonia
Bibliografia
  • [1] Aigars, J., Poikane, R., Dalsgaard, T., Eglite, E., Jansons, M., 2015. Biogeochemistry of N, P and SI in the Gulf of Riga surface sediments: implications of seasonally changing factors. Cont. Shelf Res. 105, 112—120, http://dx.doi.org/10.1016/j.csr.2015.06.008.
  • [2] Alenius, P., Tikka, K., Barrera, C., 2014. Gliders for studies of multiscale variability in the Baltic Sea. In: 6th IEEE/OES Baltic Int. Symp. (BALTIC) — Measuring and Modeling of Multi-Scale Interactions in the Marine Environment, Tallinn, Estonia, 26—29 May 2014, IEEE, 1—6, http://dx.doi.org/10.1109/BALTIC.2014.6887867.
  • [3] Apsite, E., Rudlapa, I., Latkovska, I., Elferts, D., 2013. Changes in Latvian river discharge regime at the turn of the century. Hydrol. Res. 44 (3), 554—569, http://dx.doi.org/10.2166/nh.2012.007.
  • [4] Astok, V., Otsmann, M., Suursaar, Ü., 1999. Water exchange as the main physical process in semi-enclosed marine systems: the Gulf of Riga case. Hydrobiologia 393, 11—18, http://dx.doi.org/10.1023/A:1003517110726.
  • [5] Barda, I., Purina, I., Rimsa, E., Balode, M., 2013. Seasonal dynamics of biomarkers in infaunal clam Macoma balthica from the Gulf of Riga (Baltic Sea). J. Mar. Syst. 129, http://dx.doi.org/10.1016/j.jmarsys.2013.05.006.
  • [6] Belzile, M., Galbraith, P. S., Bourgault, D., 2016. Water renewals in the Saguenay Fjord. J. Geophys. Res. Oceans 121 (1), 638—657, http://dx.doi.org/10.1002/2015JC011085.
  • [7] Berg, P., Poulsen, J. W., 2012. Implementation details for HBM. DMI Tech. Rep. No. 12-11. DMI, Copenhagen, 147 pp.
  • [8] Berzinsh, V., 1995. Hydrology. In: Ojaveer, O. (Ed.), Ecosystem of the Gulf of Riga between 1920 and 1990. Estonian Acad. Publ., Tallinn, 7—32.
  • [9] Christensen, O.-E., Kjellström, E., Zorita, E., 2015. Projected change — atmosphere. In: The BACC II Author Team (Eds.), Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies. SpringerOpen, Geesthacht, 217—233, http://dx.doi.org/10.1007/978-3-319-16006-1_11.
  • [10] Eglite, E., Lavrinovic, A., Muller-Karulis, B., Aigars, J., Poikane, R., 2014. Nutrient turnover at the hypoxic boundary: flux measurements and model representation for the bottom water environment of the Gulf of Riga, Baltic Sea. Oceanologia 56 (4), 711—735, http://dx.doi.org/10.5697/oc.56-4.711.
  • [11] Feistel, R., Nausch, G., Heene, T., Piechura, J., Hagen, E., Sea, B., 2004. Evidence for a warm water inflow into the Baltic Proper in summer 2003. Oceanologia 46 (4), 581—598.
  • [12] Funkquist, L., 2001. HIROMB, an operational eddy-resolving model for the Baltic Sea. Bull. Maritime Inst. 28 (2), 7—16.
  • [13] Geyer, W. R., MacCready, P., 2014. The estuarine circulation. Annu. Rev. Fluid Mech. 46, 175—197, http://dx.doi.org/10.1146/annurev-fluid-010313-141302.
  • [14] HELCOM (Helsinki Commission), 2009. Eutrophication in the Baltic Sea: an integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region. In: Baltic Sea Environ. Proc., 115B, Helsinki Commission. 148 pp.
  • [15] Karstensen, J., Liblik, T., Fischer, J., Bumke, K., Krahmann, G., 2014. Summer upwelling at the Boknis Eck time-series station (1982 to 2012) — a combined glider and wind data analysis. Biogeosciences 11 (13), 3603—3617, http://dx.doi.org/10.5194/bg-11-3603-2014.
  • [16] Laanearu, J., Lips, U., Lundberg, P., 2000. On the application of hydraulic theory to the deep-water flow through the Irbe Strait. J. Mar. Syst. 25, 323—332.
  • [17] Lagemaa, P., 2012. Operational forecasting in Estonian marine waters. Tallinn Univ Tech., TUT Press, Tallinn, 130 pp.
  • [18] Lilover, M. J., Lips, U., Laanearu, J., Liljebladh, B., 1998. Flow regime in the Irbe strait. Aquat. Sci. 60, 253—265.
  • [19] Lips, U., Kikas, V., Liblik, T., Lips, I., 2016a. Multi-sensor in situ observations to resolve the sub-mesoscale in the stratified Gulf of Finland, Baltic Sea. Ocean Sci. 12 (3), 715—732, http://dx.doi.org/10.5194/os-12-715-2016.
  • [20] Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016b. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents. Cont. Shelf Res. 112, 1—13, http://dx.doi.org/10.1016/j.csr.2015.11.008.
  • [21] Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016c. A numerical study of circulation in the Gulf of Riga. Baltic Sea. Part II: Mesoscale features and freshwater transport pathways. Cont. Shelf Res. 115, 44—52, http://dx.doi.org/10.1016/j.csr.2015.12.018.
  • [22] Matthäus, W., Nehring, D., Feistel, R., Nausch, G., Mohrholz, V., Lass, H. U., 2008. The inflow of highly saline water into the Baltic Sea. In: Feistel, R., Nausch, G., Wasmund, N. (Eds.), State and Evolution of the Baltic Sea, 1952—2005. Wiley, Hoboken, 265—309.
  • [23] Mohrholz, V., Dutz, G., Kraus, G., 2006. The impact of exceptional warm summer inflow events on the environmental conditions in the Bornholm Basin. J. Mar. Syst. 60 (3—4), 285—301, http://dx.doi.org/10.1016/j.jmarsys.2005.10.002.
  • [24] Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., Gräwe, U., 2015. Fresh oxygen for the Baltic Sea–—an exceptional saline inflow after a decade of stagnation. J. Mar. Syst. 148, 152—166, http://dx.doi.org/10.1016/j.jmarsys.2015.03.005.
  • [25] Müller-Karulis, B., Aigars, J., 2011. Modeling the long-term dynamics of nutrients and phytoplankton in the Gulf of Riga. J. Mar. Syst. 87 (3—4), 161—176, http://dx.doi.org/10.1016/j.jmarsys.2011.03.006.
  • [26] Omstedt, A., Axell, A., 2003. Modeling the variations of salinity and temperature in the large gulfs of the Baltic Sea. Cont. Shelf Res. 23 (3—4), 265—294, http://dx.doi.org/10.1016/S0278-4343(02)00207-8.
  • [27] Omstedt, A., Elken, J., Lehmann, A., Lepparänta, M., Meier, H. E. M., Myrberg, K., Rutgersson, A., 2014. Progress in physical oceanography of the Baltic Sea during the 2003-2014 period. Prog. Oceanogr. 128, 139—171, http://dx.doi.org/10.1016/j.pocean.2014.08.010.
  • [28] Otsmann, M., Suursar, Ü., Kullas, T., 2001. The oscillatory nature of the flows in the system of straits and small semienclosed basins of the Baltic Sea. Cont. Shelf Res. 21 (15), 1577—1603, http://dx.doi.org/10.1016/S0278-4343(01)00002-4.
  • [29] Pitkänen, H., Lehtoranta, J., Räike, A., 2001. Internal nutrient fluxes counteract decreases in external load: the case of the estuarial eastern Gulf of Finland, Baltic Sea. Ambio 30 (4—5), 195—201.
  • [30] Purokoski, T., Eemeli, A., Nummelin, A., 2013. First long-term deployment of Argo float in Baltic Sea Argo's Inaugural operation in shallow, low-salinity water. Sea Technol. 54 (10), 41—44.
  • [31] Raudsepp, U., 2001. Interannual and seasonal temperature and salinity variations in the Gulf of Riga and corresponding saline water inflow from the Baltic Proper. Hydrol. Res. 32 (2), 135—160.
  • [32] Reissmann, J. H., Burchard, H., Feistel, R., Hagen, E., Lass, H.-U., Mohrholz, V., Nausch, G., Umlauf, L., Wieczorek, G., 2009. Vertical mixing in the Baltic Sea and consequences for eutrophication–—a review. Prog. Oceanogr. 82 (1), 47—80, http://dx.doi.org/10.1016/j.pocean.2007.10.004.
  • [33] Seinä, A., Palosuo, E., 1996. The classification of the maximum annual extent of ice cover in the Baltic Sea 1720—1995. In: MERI: Report Series of the Finnish Institute of Marine Research, vol. 27. 79—91.
  • [34] Seppälä, J., Balode, M., 1999. Spatial distribution of phytoplankton in the Gulf of Riga during spring and summer stages. J. Mar. Syst. 23 (1), 51—68, http://dx.doi.org/10.1016/S0924-7963(99)00050-0.
  • [35] Skudra, M., Lips, U., 2016. Characteristics and inter-annual changes in temperature, salinity and density distribution in the Gulf of Riga. Oceanologia 59 (1), 37—48, http://dx.doi.org/10.1016/j.oceano.2016.07.001.
  • [36] Stipa, T., Tamminen, T., Seppälä, J., 1999. On the creation and maintenance of stratification in the Gulf of Riga. J. Mar. Syst. 23 (1—3), 27—49, http://dx.doi.org/10.1016/S0924-7963(99)00049-4.
  • [37] Talpsepp, L., 2005. Coherent current oscillations and water exchange in the straits of the Gulf of Riga. Oceanologia 47 (2), 115—127.
  • [38] Uotila, P., Vihma, T., Haapala, J., 2015. Atmospheric and oceanic conditions and the extremely low Bothnian Bay sea ice extent in 2014/2015. Geophys. Res. Lett. 42 (18), 7740—7749, http://dx.doi.org/10.1002/2015GL064901.
  • [39] Valle-Levinson, A., 2010. Contemporary issues in Estuarine Physics. Cambridge Univ. Press, Cambridge, 326 pp.
  • [40] Weiss, R. F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. 17 (4), 721—735.
  • [41] Westerlund, A., Tuomi, L., 2016. Vertical temperature dynamics in the Northern Baltic Sea based on 3D modelling and data from shallow-water Argo floats. J. Mar. Syst. 158, 34—44, http://dx.doi.org/10.1016/j.jmarsys.2016.01.006.
  • [42] Yurkovskis, A., 2004. Long-term land-based and internal forcing of the nutrient state of the Gulf of Riga (Baltic Sea). J. Mar. Syst. 50 (3—4), 181—197, http://dx.doi.org/10.1016/j.jmarsys.2004.01.004.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b8f1be7-9f4a-4dea-a721-2ffa6e9d494a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.