Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ zużytych i nominalnych profili szyn na ruch i dynamikę pojazdów szynowych
Języki publikacji
Abstrakty
In this study the rail wear influence on safety of rail vehicle motion is assessed. The profile measurements for the nominal rail head and for the slightly worn and heavily worn rail heads were performed. Then, these measured real values were entered into a computer program designed to study the motion (dynamics) of rail vehicles. The studied model of passenger vehicle moved in simulations along a track consisting of straight and curved sections with transition curve between them at two velocities. After obtaining the simulation results, they were compared for different stages of the rail wear process based on profile measurement results and the suitability of the track was assessed, too. The aim of present paper was to show that extension of the traditional approach with the simulation studies of vehicle motion and dynamics leads to different and much more precise information about the need of the rails replacement. The proposed idea and approach in the current work is original and not used in practice by the track infrastructure operators.
W pracy oceniono wpływ zużycia szyn na bezpieczeństwo ruchu pojazdów szynowych. Wykonano pomiary profili dla nominalnej główki szyny oraz dla lekko i mocno zużytej główki szyny. Następnie te zmierzone wartości rzeczywiste wprowadzono do programu komputerowego przeznaczonego do badania ruchu (dynamiki) pojazdów szynowych. Badany model pojazdu pasażerskiego poruszał się w symulacjach po torze składającym się z odcinków prostych i zakrzywionych z krzywą przejściową między nimi przy dwóch prędkościach. Po uzyskaniu wyników symulacji porównano je dla różnych etapów procesu zużywania się szyn na podstawie wyników pomiarów profilu oraz oceniono przydatność toru. Celem niniejszego artykułu było wykazanie, że rozszerzenie tradycyjnego podejścia o badania symulacyjne ruchu i dynamiki pojazdów prowadzi do uzyskania odmiennej i znacznie dokładniejszej informacji o potrzebie wymiany szyn. Zaproponowana koncepcja i podejście jest oryginalne i nie jest stosowane w praktyce przez zarządców infrastruktury szynowej. Można go zatem traktować jako nowość i pewien wkład autorów w problematykę i metodykę utrzymania torów.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
177--192
Opis fizyczny
Bibliogr. 40 poz., il.
Twórcy
autor
- Warsaw Universityof Technology, Faculty of Transport, Warsaw, Poland
autor
- Warsaw Universityof Technology, Faculty of Transport, Warsaw, Poland
autor
- Warsaw Universityof Technology, Faculty of Transport, Warsaw, Poland
autor
- Warsaw Universityof Technology, Faculty of Transport, Warsaw, Poland
Bibliografia
- [1] X.C. Jin and M. Ahmadian, “Wheel wear predictions and analyses of high-speed trains”, Nonlinear Engineering, vol. 1, pp. 91-99, 2012.
- [2] X. Li, T. Yang, J. Zhang, J. Cao, Z. Wen, and X. Jin, “Rail wear on the curve of a heavy haul line – numerical simulations and comparison with field measurements”, Wear, vol. 366-367, pp. 131-138, 2016, doi: 10.1016/j.wear.2016.06.024.
- [3] L. Wu, X. Yao, J. VanderMarel, X. Lu, J. Cotter, D. Eadie, Z. Wen, and H. Wang, “Effects of curve radius and rail profile on energy saving in heavy haul achieved by application of top of rail friction modifier”, Wear, vol. 366-367, pp. 279-286, 2016, doi: 10.1016/j.wear.2016.07.003.
- [4] A. Chudzikiewicz, B. Sowinski, and A. Szulczyk, “The wheels and rails profiles wear influence on railway vehicle behaviour”, International Journal of Machines, Technology, Materials, vol. 9, no. 1, pp. 8-11, 2009.
- [5] R. Enblom, Simulation of wheel and rail profile evolution, KTH, 2004.
- [6] I. Zobory, “Prediction of wheel/rail profile wear”, Vehicle Systems Dynamics, vol. 28, no. 2-3, 1997.
- [7] J. Nielsen, R. Lunden, A. Johansson, and T. Vernersson, “Train-track interaction and mechanism of irregular wear on wheel and rail surfaces”, Vehicle Systems Dynamics, vol. 40, no. 1-3, pp. 3-54, 2003.
- [8] I. Shevtsov, M. Valeri, and C. Esveld, Shape optimization of railway wheel profile under uncertainties. Delft University of Technology, 2006.
- [9] H.Y. Choi, D.H. Lee, C.Y. Song, and J. Lee, “Optimization of rail profile to reduce wear on curved track”, International Journal of Precision Engineering and Manufacturing, vol. 14, no. 4, pp. 619-625, 2013, doi: 10.1007/s12541-013-0083-1.
- [10] I. Shevtsov, M. Valeri, and C. Esveld, “Optimal design of wheel profile for railway vehicles”, Wear, vol. 258, no. 7-8, pp. 1022-1030, 2005, doi: 10.1016/j.wear.2004.03.051.
- [11] W. Choromanski and K. Zboinski, “Optimization of wheel and rail profiles for various conditions of vehicle motion”, Vehicle Systems Dynamics, vol. 20, no. sup. 1, pp. 84-98, 1992, doi: 10.1080/00423119208969390.
- [12] W. Kai, R. Chen, and Y. Xu, “Rail profile wear on curve and its effect on wheel-rail contact geometry”, Advanced Materials Research, vol. 779-780, pp. 655-659, 2013, doi: 10.4028/www.scientific.net/AMR.779-780.655.
- [13] W. Zhai, J. Gao, P. Liu, and K. Wang, “Reducing rail side wear on heavy-haul railway curves based on wheel-rail dynamic interaction”, Vehicle Systems Dynamics, vol. 52, no. 1, pp. 440-454, 2014, doi: 10.1080/00423114.2014.906633.
- [14] R. Chen, J. Cen, P. Wang, J. Fang, and J. Xu, “Impact of wheel profile evolution on wheel-rail dynamic interaction and surface initiated rolling contact fatigue in turnouts”, Wear, vol. 438-439, 2019, doi: 10.1016/j.wear.2019.203109.
- [15] J. Xu, P. Wang, L. Wang, and R. Chen, “Effects of profile wear on wheel-rail contact conditions and dynamic interaction of vehicle and turnout”, Advances in Mechanical Engineering, vol. 8, no. 1, pp. 1-14, 2016, doi: 10.1177/1687814015623696.
- [16] P. Stastniak, L. Smetanka, and P. Drozdziel, “Computer aided simulation analysis for wear investigation of railway wheel running surface”, Diagnostics, vol. 20, no. 3, pp. 63-68, 2019, doi: 10.29354/diag/111569.
- [17] J.F. Santa, A. Toro, and R. Lewis, “Correlations between rail wear rates and operating conditions in a commercial railroad”, Tribology International, vol. 95, pp. 5-12, 2016, doi: 10.1016/j.triboint.2015.11.003.
- [18] J. Pombo, “Application of a computational tool to study the influence of worn wheels on railway vehicle dynamics”, Journal of Software Engineering and Applications, vol. 5, no. 2, pp. 51-61, 2012, doi: 10.4236/jsea.2012.52009.
- [19] M. Asplund, “Wayside condition monitoring system for railway wheel profiles: application and performance assessment”, PhD. Thesis, Lulea University of Technology, 2016.
- [20] H. Soleimani and M. Moavenian, “Tribological aspects of wheel-rail contact: a review of wear mechanisms and effective factors on rolling contact fatigue”, Urban Rail Transit,vol. 3, pp. 227-237, 2017, doi: 10.1007/s40864-017-0072-2.
- [21] A. Meghoe, R. Loendersloot, and T. Tinga, “Rail wear and remaining life prediction using meta-models”, International Journal of Rail Transportation,vol. 8, no. 1, pp. 1-26, 2020, doi: 10.1080/23248378.2019.1621780.
- [22] F. Braghin, S. Bruni, and F. Resta, “Wear of railway wheel profiles: a comparison between experimental results and a mathematical model”, Vehicle Systems Dynamics, vol. 37, no. 1, pp. 478-489, 2002, doi: 10.1080/00423114.2002.11666256.
- [23] R. Melnik and B. Sowinski, “Analysis of dynamics of a metro vehicle model with differential wheelsets”, Transport Problems, vol. 12, no. 3, pp. 113-124, 2017, doi: 10.20858/tp.2017.12.3.11.
- [24] L. Valente, L. Lopes, and L. Sousa Ribeiro, “Influence of bogie maintenance and retrofitting on wheel wear: analysis using integer programming and multibody simulation”, Applied Sciences, 13, np. 10, 2023, doi: 10.3390/app13106101.
- [25] X. Peng, J. Zeng, Q. Wang, and H. Zhu, “Research on an identification method for wheelset coaxial wheel diameter difference based on trackside wheelset lateral movement detection”, Sensors, vol. 23, no. 13, 2023, doi: 10.3390/s23135803 .
- [26] C. Braganca, E.F. Souza, D. Rebeiro, A. Mexeido, T.N. Bittencourt, and H. Carvalho, “Drive-by methodologies applied to railway infrastructure subsystems: a literature review - part II: track and vehicle”, Applied Sciences, vol. 13, no. 12, 2023, doi: 10.3390/app13126982.
- [27] X. Xu, X. Cui, J. Xu, X.Wen, and Z. Yang, “Study on the interaction between wheel polygon and rail corrugation in high-speed railways”, Materials, vol. 15, no. 24, 2022, doi: 10.3390/ma15248765.
- [28] C. Kraskiewicz, A. Zbiciak, W. Oleksiewicz, and W. Karwowski, “Static and dynamic parameters of railway tracks retrofitted with under sleeper pads”, Archives of Civil Engineering, vol. 64, no. 4, pp. 187-201, 2018, doi: 10.2478/ace-2018-0070.
- [29] B. Indraratna, Y. Qi, C. Jayasuriya, C. Rujikiatkamjorn, and C.M.K. Arachchige, “Use of recycled rubber inclusions with granular waste for enhanced track performance”, Transportation Engineering, vol. 6, 2021, doi: 10.1016/j.treng.2021.100093.
- [30] C. Kraskiewicz, H. Anysz, A. Zbiciak, M. Pludowska-Zagrajek, and A. Al Sabuani-Zawadzka, “Artificial neural networks as a tool for selecting the parameters of prototypical under sleeper pads produced from recycled rubber granulate”, Journal of Cleaner Production, vol. 405, 2023, doi: 10.1016/j.jclepro.2023.136975.
- [31] C. Kraskiewicz, A. Zbiciak, and A. Al Sabuani-Zawadzka, “Laboratory tests of resistance to severe environmental conditions of prototypical under sleeper pads applied in the ballasted track structures”, Archives of Cvil Engineering, vol. 67, no. 3, 2021, doi: 10.24425/ace.2021.138058.
- [32] S. Kaewunruen, A. Aikawa, and A.M. Remennikov, “Vibration attenuation at rail joints through under sleeper pads”, Procedia Engineering, vol. 189, pp. 193-198, 2017, doi: 10.1016/j.proeng.2017.05.031.
- [33] K. Zboinski and P. Woznica, “Optimum railway transition curves - method of the assessment and results”, Energies, vol. 14, no. 13, art. no. 3995, 2021, doi: 10.3390/en14133995.
- [34] K. Zboinski and P. Woznica, “Optimisation of railway polynomial transition curves with regard to the wheel/rail wear”, presented at International Conference “Railways 2014”, 2014.
- [35] K. Zboinski, Nieliniowa dynamika pojazdów szynowych w łuku. Warsaw-Radom: ITE PIB Publishers, 2012 (in Polish).
- [36] W. Choromanski and K. Zboinski, Pakiet softwarowy do automatycznej generacji równań ruchu i analizy dynamiki pojazdu, in Materiały X Konferencji Naukowej “Pojazdy Szynowe”, vol. 3. Wrocław, 1994, pp. 34-55.
- [37] K. Zboinski, “Relative kinematics exploited in Kane’s approach to describe multibody system in relative motion”, Acta Mechanica, vol. 147, no. 1-4, pp. 19-34, 2001, doi: 10.1007/BF01182349.
- [38] H. Josepsh and R.L. Huston, Dynamics of mechanical systems, Boca Raton: CRC Press, 2002.
- [39] K. Zboinski “Modelling dynamics of certain class of discrete multi-body systems based on direct method of the dynamics of relative motion”, Meccanica, vol. 47, no. 6, pp. 1527-1551, 2012, doi: 10.1007/s11012-011-9530-1.
- [40] J.J. Kalker, “A fast algorithm for the simplified theory of rolling contact”, Vehicle System Dynamics, vol. 11, no. 1, pp. 1-13, 1982, doi: 10.1080/00423118208968684.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b82596a-bdc5-4170-95cd-ed9137f5fd43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.