Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper introduces three different normalization associated with the second and third q-Bessel-Struve functions. We use Hadamard factorizations to determine the radii of starlike and convexity of these functions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
61--80
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
- Department of Mathematics and Computer Science, Faculty of Science, Suez University, Suez, Egypt
- Academy of Scientific Research and Technology (ASRT), Cairo, Egyp
autor
- Department of Mathematics, Faculty of Science, Cairo University, Cairo, Egypt
Bibliografia
- [1] A. R. Ahmadi and S. E. Widnall, Unsteady lifting-line theory as a singular perturbation problem, J. Fluid Mech. 153 (1985), 59–81.
- [2] D. C. Shaw, Perturbational results for diffraction of water-waves by nearly vertical barriers, J. Appl. Math. 34 (1985), 99–117.
- [3] K. M. Oraby and Z. S. I. Mansour, On q-analogs of Struve functions, Quaest. Math. 44 (2021), no. 9, 1–29.
- [4] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 2004.
- [5] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944.
- [6] B. Ya. Levin, Lectures on Entire Functions, vol. 150, Translations of Mathematical Monographs, American Mathematical Society, 1996.
- [7] I. Aktas, A. Baricz, and H. Orhan, Bounds for radii starlikeness and convexity of some special functions, Turk. J. Math. 42 (2018), 211–226.
- [8] A. Baricz and R. Szász, Close-to-convexity of some special functions and their derivatives, Bull. Malays. Math. Sci. Soc. 39 (2016), 427–437.
- [9] A. Baricz and N. Yağmur, Geometric properties of some Lommel and Struve functions, Ramanujan J. 42 (2017), 325–346.
- [10] N. Yağmur and H. Orhan, Starlikeness and convexity of generalized Struve functions, Abstr. Appl. Anal. 2013 (2013), 1–7.
- [11] I. Aktas, A. Baricz, and N. Yağmur, Bounds for the radii of univalence of some special functions, Math. Inequal. Appl. 20 (2017), 825–843.
- [12] A. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica 48 (2006), 13–18.
- [13] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen 73 (2008), 155–178.
- [14] A. Baricz, P. A. Kupán, and R. Szász, The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc. 142 (2014), no. 2019–2025, 2014.
- [15] A. Baricz and R. Szász, The radius of convexity of normalized Bessel functions of the first kind, Anal. Appl. 12 (2014), no. 5, 485–509.
- [16] A. Baricz, D. K. Dimitrov, H. Orhan, and N. Yağmur, Radii of starlikeness of some special functions, Proc. Amer. Math. Soc. 144 (2014), no. 8, 3355–3367.
- [17] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl. 172 (1993), 574–581.
- [18] E. Deniz, S. Kazimoğlu, and M. Çağlar, Radii of uniform convexity of Lommel and Struve functions, Bull. Iran. Math. Soc. 47 (2021), 1533–1557.
- [19] M. Çağlar, E. Deniz, and R. Szász, Radii of α-convexity of some normalized Bessel functions of the first kind, Results Math. 72 (2017), 12023–12035.
- [20] E. Deniz, A. Baricz, and M. Çağlar, Radii of convexity of some normalized Bessel functions of the first kind, Bull. Malays. Math. Sci. Soc. 83 (2015), 1255–1280.
- [21] M. E. H. Ismail, E. Merkes, and D. Styer, A generalization of starlike functions, Complex Var. Theory Appl. 14 (1990), 77–88.
- [22] I. Aktas and H. Orhan, Bounds for radii of convexity of some q-Bessel functions, Bull. Korean Math. Soc. 57 (2020), 355–369.
- [23] A. Baricz, D. K. Dimitrov, and I. Mecő, Radii of starlikeness and convexity of some q-Bessel functions, J. Math. Anal. Appl. 435 (2016), 968–985.
- [24] E. Toklu, Radii of starlikeness and convexity of q-Mittage-Leffler functions, Turkish J. Math. 43 (2019), 2610–2630.
- [25] E. Toklu, I. Aktas, and H. Orhan, Radii problems for normalized q-Bessel and Wright functions, Acta Univ. Sapientiae Math. 11 (2019), 203–223.
- [26] A. Baricz, S. Ponnusamy, and S. Singh, Turán type inequalities for Struve functions, J. Math. Anal. App. 455 (2017), 971–984.
- [27] P. I. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
- [28] S. Agarwal and S. K. Sahoo, Generalization of starlike functions of order alpha, Hokkaido Math. J. 46 (2017), 15–27.
- [29] D. K. Dimitrov and Y. B. Cheikh, Laguerre polynomials as Jensen polynomials of Laguerre-Pólya entire functions, J. Comput. Appl. Math. 233 (2009), no. 3, 703–707.
- [30] H. Skovgarrd, On inequalities of the Turán type, Math. Scand. 2 (1954), 65–73.
- [31] B. Dahlberg, A minimum principle for positive harmonic function, Proc. London Math. Soc. 3 (1976), no. 33, 238–250.
- [32] R. P. Boas Jr., Entire Functions, Academic Press Inc., New York, 1954.
- [33] M. E. H. Ismail and M. E. Muldoon, Bounds for the small real and purely imaginary zeros of Bessel and related functions, Methods Appl. Anal. 2 (1995), 1–21.
- [34] I. Aktas, On some geometric properties and Hardy class of q-Bessel functions, AIMS Math. 4 (2020), 3156–3168.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b7bec44-d127-4938-a563-094cf2c0fb52