Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Brain tumors can be difficult to diagnose, as they may have similar radiographic characteristics, and a thorough examination may take a considerable amount of time. To address these challenges, we propose an intelligent system for the automatic extraction and identification of brain tumors from 2D CE MRI images. Our approach comprises two stages. In the first stage, we use an encoder-decoder based U-net with residual network as the backbone to detect different types of brain tumors, including glioma, meningioma, and pituitary tumors. Our method achieved an accuracy of 99.60%, a sensitivity of 90.20%, a specificity of 99.80%, a dice similarity coefficient of 90.11%, and a precision of 90.50% for tumor extraction. In the second stage, we employ a YOLO2 (you only look once) based transfer learning approach to classify the extracted tumors, achieving a classification accuracy of 97%. Our proposed approach outperforms state-of-the-art methods found in the literature. The results demonstrate the potential of our method to aid in the diagnosis and treatment of brain tumors.
Wydawca
Czasopismo
Rocznik
Tom
Strony
616--633
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electrical and Electronics Engineering, GIET University, Gunupur, Odisha, India
autor
- Department of Electronics and Communication Engineering, GIET University, Gunupur, Odisha, India
autor
- Department of Electrical and Electronics Engineering, GIET University, Gunupur, Odisha, India
autor
- Department of Computer Science Engineering, Chandigarh University, Punjab, India
Bibliografia
- [1] https://health.economictimes.indiatimes.com. 2022.
- [2] Mohan G, Subashini MM. MRI based medical image analysis: Survey on brain tumor grade classification. Biomed Signal Process Control 2018;39:139-61. https://doi.org/10.1016/j. Bspc.2017.07.007.
- [3] Işın A, Direkoğlu C, Sah M. Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci 2016;102:317-24. https://doi.org/10.1016/j.Procs.2016.09.407.
- [4] Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 2015;34:1993-2024. https://doi.org/10.1109/ TMI.2014.2377694.
- [5] Cheng J. https://doi.org/10.6084/m9.figshare.1512427.v5. 2017. doi: 10.6084/m9.figshare.1512427.v5.
- [6] Deepak S, Ameer PM. Brain tumor categorization from imbalanced MRI dataset using weighted loss and deep feature fusion. Neurocomputing 2023;520:94-102. https://doi. org/10.1016/j.neucom.2022.11.039.
- [7] Razzaghi P, Abbasi K, Shirazi M, et al. Multimodal brain tumor detection using multimodal deep transfer learning. Appl Soft Comput 2022;129. https://doi.org/10.1016/j.asoc.2022.109631 109631.
- [8] Alnowami M, Taha E, Alsebaeai S, et al. MR image normalization dilemma and the accuracy of brain tumor classification model. J Radiat Res Appl Sci 2022;15:33-9. https://doi.org/10.1016/j.jrras.2022.05.014.
- [9] Pankaj Kasar Shivajirao M, Jadhav VK. MRI modality-based brain tumor segmentation using deep neural networks. Res Sq 2022:1-15. https://doi.org/10.21203/rs.3.rs-496162/v1.
- [10] Dong H, Yang G, Liu F, et al. Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. 2017; 506-17. 10.1007/978-3-319-60964-5_44.
- [11] Zahoor MM, Khan SH. Brain Tumor MRI classification using a novel deep residual and regional CNN. Published Online First: 29 November 2022. doi: 10.48550/arXiv.2211.16571.
- [12] Niepceron Brad, AhmedNait-Sidi-Moh FG. Spiking convolutional neural network for brain tumor classication. Res Square 2022:1-14. https://doi.org/10.21203/rs.3.rs1129282/v1.
- [13] Munira HA, Islam MS. Hybrid deep learning models for multi-classification of tumour from brain MRI. J Inf Syst Eng Bus Intell 2022;8:162-74. https://doi.org/10.20473/jisebi.8.2.162-174.
- [14] El-Shafai WA, Mahmoud AM, El-Rabaie E-S, et al. Hybrid segmentation approach for different medical image modalities. Comput. Mater. Continua 2022;73:3455-72. https://doi.org/10.32604/cmc.2022.028722.
- [15] Gab Allah AM, Sarhan AM, Elshennawy NM. Classification of brain MRI tumor images based on deep learning PGGAN augmentation. Diagnostics 2021;11:2343. https://doi.org/ 10.3390/diagnostics11122343.
- [16] Díaz-Pernas FJ, Martínez-Zarzuela M, Antón-Rodríguez M, et al. A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network. Healthcare 2021;9:153. https://doi.org/10.3390/ healthcare9020153.
- [17] Kabir Anaraki A, Ayati M, Kazemi F. Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern Biomed Eng 2019;39:63-74. https://doi.org/10.1016/ j.bbe.2018.10.004.
- [18] Hashemzehi R, Mahdavi SJS, Kheirabadi M, et al. Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybern Biomed Eng 2020;40:1225-32. https://doi.org/10.1016/j.bbe.2020.06.001.
- [19] Mayala S, Herdlevær I, Haugsøen JB, et al. Brain tumor segmentation based on minimum spanning tree. Front Signal Process 2022:2. https://doi.org/10.3389/frsip.2022.816186.
- [20] Lu S-L, Liao H-C, Hsu F-M, et al. The intracranial tumor segmentation challenge: Contour tumors on brain MRI for radiosurgery. Neuroimage 2021;244. https://doi.org/10.1016/j. Neuroimage.2021.118585 118585.
- [21] Tripathi S, Verma A, Sharma N. Automatic segmentation of brain tumour in MR images using an enhanced deep learning approach. Comput Methods Biomech Biomed Eng Imaging Vis 2021;9:121-30. https://doi.org/10.1080/21681163.2020.1818628.
- [22] Sriramakrishnan P, Kalaiselvi T, Rajeswaran R. Modified local ternary patterns technique for brain tumour segmentation and volume estimation from MRI multi-sequence scans with GPU CUDA machine. Biocybern Biomed Eng 2019;39:470-87. https://doi.org/10.1016/j.bbe.2019.02.002.
- [23] Kaur T, Saini BS, Gupta S. An optimal spectroscopic feature fusion strategy for MR brain tumor classification using Fisher Criteria and Parameter-Free BAT optimization algorithm. Biocybern Biomed Eng 2018;38:409-24. https://doi.org/ 10.1016/j.bbe.2018.02.008.
- [24] Raju AR, Suresh P, Rao RR. Bayesian HCS-based multi-SVNN: A classification approach for brain tumor segmentation and classification using Bayesian fuzzy clustering. Biocybern Biomed Eng 2018;38:646-60. https://doi.org/10.1016/j. Bbe.2018.05.001.
- [25] Sumathi R, Venkatesulu M, Arjunan SP. Extracting tumor in MR brain and breast image with Kapur’s entropy based Cuckoo Search Optimization and morphological reconstruction filters. Biocybern Biomed Eng 2018;38:918-30. https://doi.org/10.1016/j.bbe.2018.07.005.
- [26] Yang T, Song J, Li L. A deep learning model integrating SKTPCNN and random forests for brain tumor segmentation in MRI. Biocybern Biomed Eng 2019;39:613-23. https://doi.org/ 10.1016/j.bbe.2019.06.003.
- [27] Dey N, Rajinikanth V, Shi F, et al. Social-group-optimization based tumor evaluation tool for clinical brain MRI of flair/ diffusion-weighted modality. Biocybern Biomed Eng 2019;39:843-56. https://doi.org/10.1016/j.bbe.2019.07.005.
- [28] Siva Raja PM, Rani AV. Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach. Biocybern Biomed Eng 2020;40:440-53. https://doi.org/10.1016/j.bbe.2020.01.006.
- [29] Devi S, Sahoo MN, Bakshi S. A novel privacy-supporting 2- class classification technique for brain MRI images. Biocybern Biomed Eng 2020;40:1022-35. https://doi.org/ 10.1016/j.bbe.2020.05.005.
- [30] Kumar S, Mankame DP. Optimization driven deep convolution neural network for brain tumor classification. Biocybern Biomed Eng 2020;40:1190-204. https://doi.org/ 10.1016/j.bbe.2020.05.009.
- [31] Dandıl E, Karaca S. Detection of pseudo brain tumors via stacked LSTM neural networks using MR spectroscopy signals. Biocybern Biomed Eng 2021;41:173-95. https://doi. org/10.1016/j.bbe.2020.12.003.
- [32] Alagarsamy S, Kamatchi K, Govindaraj V, et al. Multi-channeled MR brain image segmentation: A new automated approach combining BAT and clustering technique for better identification of heterogeneous tumors. Biocybern Biomed Eng 2019;39:1005-35. https://doi.org/10.1016/j. Bbe.2019.05.007.
- [33] Shahin AI, Aly W, Aly S. MBTFCN: A novel modular fully convolutional network for MRI brain tumor multi-classification. Expert Syst Appl 2023;212. https://doi.org/ 10.1016/j.eswa.2022.118776 118776.
- [34] Zhu Z, He X, Qi G, et al. Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Inf Fusion 2023;91:376-87. https://doi.org/ 10.1016/j.inffus.2022.10.022.
- [35] Demir K, Arı B, Demir F. Detection of brain tumor with a pre-trained deep learning model based on feature selection using MR images. Firat Univ J Exp Comput Eng 2023;2:23-31. https:// doi.org/10.5505/fujece.2023.36844.
- [36] Wagh Atharwa, Bhosale Aniket, Singh Tripty, Rekha R, Nair TB. Brain Tumor classification using BrainNet: A deep learning approach. Signal Image Video Process 2023. https:// doi.org/10.21203/rs.3.rs-2502279/v1.
- [37] Gómez-Guzmán MA, Jiménez-Beristaín L, García-Guerrero EE, et al. Classifying brain tumors on magnetic resonance imaging by using convolutional neural networks. Electronics (Basel) 2023;12:955. https://doi.org/10.3390/electronics12040955.
- [38] Alsubai S, Khan HU, Alqahtani A, et al. Ensemble deep learning for brain tumor detection. Front Comput Neurosci 2022;16. https://doi.org/10.3389/fncom.2022.1005617.
- [39] Saeedi S, Rezayi S, Keshavarz H, et al. MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Med Inf Decis Making 2023;23:16. https://doi.org/10.1186/s12911-023-02114-6.
- [40] Raza R, Ijaz Bajwa U, Mehmood Y, et al. dResU-Net: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI. Biomed Signal Process Control 2023;79. https://doi.org/10.1016/j.bspc.2022.103861 103861.
- [41] Khanna A, Londhe ND, Gupta S, et al. A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images. Biocybern Biomed Eng 2020;40:1314-27. https://doi.org/10.1016/j. Bbe.2020.07.007.
- [42] https://www.kaggle.com/ahmedhamada0/brain-tumordetection.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b7bc896-976c-4abc-a341-da2c4eb63c6e