PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composition and seasonal changes in filamentous algae in floating mats

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The occurrence of algal-cyanobacterial metaphyton mats in field (Konojad village) and artificial ponds (Poznań city) was investigated in the Wielkopolska region. The surface area of algal mats ranged between ca. 45% (natural pond) and 10% (artificial pond) of the total water surface, and the mats occurred from the water surface to the bottom; the algal diversity was similar in both types of ponds, i.e. about 10 taxa. The most frequently recorded and dominant taxa in small water bodies were: Spirogyra spp., Cladophora fracta in the artificial pond and Oedogonium spp., Cladophora rivularis in the natural pond. The dynamics of macroalgae demonstrated a pattern comprising different phases of taxa dominance. For example, April regarded as the first phase was characterized by a small amount of metaphyton, represented by Tribonema and Ulothrix taxa. In May, these species disappeared and were replaced by: Oedogonium spp. and Cladophora spp. which formed large aggregations in the field pond, and Spirogyra spp. which abundantly proliferated in the artificial pond. From June, however, Oedogonium and/or Cladophora significantly dominated in the mat structure and at the same time covered a large area of the water surface. The algal community was dominated by common algal taxa, among which single filaments of other taxa could also occur.
Rocznik
Strony
273--281
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Hydrobiology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland
autor
  • Department of Hydrobiology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland
Bibliografia
  • [1]. Borchardt, M.A. (1996). Nutrients, In R.J. Stevenson, M.K. Bothwell & R.L. Lowe (eds.), Algal ecology: Freshwater benthic ecosystems. (pp. 184-218). Elsevier, Academic Press.
  • [2]. Cambra, J., Aboal, M. (1992). Filamentous green algae of Spain: distribution and ecology. Limnetica (8): 213-220.
  • [3]. Fairchild, G.W., Sherman, J.W., Acker F.W. (1989). Effects of nutrient (N, P, C) enrichment, grazing and depth upon littoral periphyton of a softwater lake. Hydrobiologia 173: 69-83.
  • [4]. Graham, J.M., Arancibia-Avila, P., Graham, L.E. (1996). Physiological ecology of a species of the filamentous green alga Mougeotia under acidic conditions: light and temperature effects on photosynthesis and respiration. Limnology and Oceanography 41: 253-262.
  • [5]. Graham, J.M., Lembi, C.A., Adrian, H.L, Spencer, D.F. (1995). Physiological responses to temperature and irradiance in Spirogyra (Zygnematales, Charophyceae). Journal of Physiology 31: 531-540.
  • [6]. Hillebrand, H. (1983). Development and dynamics of floating clusters of filamentous algae. In R.G. Wetzel (ed.), Periphyton of Freshwater Ecosystems (pp.31-39). Springer Netherlands, DOI: 10.1007/978-94-009-7293-3_7.
  • [7]. Kadłubowska, Z.J. (1972). Chlorophyta V Conjugales Zygnemaceae. Flora Słodkowodna Polski, Kraków, PWN.
  • [8]. Kelehr, M. J., Rader, R.B. (2008). Dispersal limitations and history explain community composition of metaphyton in desert springs of the Bonneville Basin, Utah: A multiscale analysis. Limnol. Oceanogr. 53(4): 1604-1613.
  • [9]. Khanum, A. (1982). An ecological study of freshwater algal mats. Bot. Bull. Academia Sinica 23: 89-104.
  • [10]. Lembi, C.A. (2000). Relative Tolerance of Mat-forming Algae to Copper. J. Aquat. Plant Manage.38: 68-70.
  • [11]. Mares, J., Leskinen, E., Sitkowska, M., Skacelova, O., Blomster, J. (2011). True identity of the European freshwater Ulva (Chlorophyta, Ulvophyceae) revealed by a combined molecular and morphological approach. J. Phycol. 47: 1177¬1192. DOI: 10.1111/j.1529-8817.2011.01048.x.
  • [12]. Margalef, R. (1983). Limnologia (pp. 1010). Editorial Omega, Barcelona, Spain.
  • [13]. Messyasz, B., Rybak, A., Pikosz, M., Szendzina, L. (2012). Fertility effects on Ulva thalli mass development in inland waters of Poland. Biologie Animalä 69-83.
  • [14]. Mrozińska, T. (1982). Zielenice (Chlorophyta) Edogoniowce (Oedogoniales), Flora Polski, PWN, Warszawa-Kraków.
  • [15]. Mrozińska, T. (1991). A preliminary investigation of the taxonomic classification of the genus Oedogonium Link (Oedogoniales) based on the phylogenetic relationship. Arch. Protistenk. 139: 85-101.
  • [16]. Mrozińska-Weeb, T. (1976). A study on epiphytic alga of the order Oedogoniales on the basis of materials from Southern Poland. Fragm. Flor. et Geobot. 22 (1-2): 147-227.
  • [17]. Pieczyńska, E. (2008). Eutrophication of shallow lakes - importance of macrophytes. Wiadomości Ekologiczne 54 :1.
  • [18]. Pikosz, M. (2012). Oedogonium capillare (Chlorophyta, Oedogoniales) from the new site in Poland. Creative Science- Monografia, Tom III, CreativeTime, ISBN 978-83-63058-25¬8.
  • [19]. Pliński, M., Hindak, F. (2012). Zielenice-Chlorophyta: Filamentous green algae. Gdańsk: Wydawnictwo Uniwersytetu Gdańskiego.
  • [20]. Poulickova, A., Hasler, P., Lysakova, M., Spears, B. (2008). The ecology of freshwater epipelic algae: an update. Phycologia 47: 437-450. DOI: 10.2216/07-59.1.
  • [21]. Power, M., Lowe, R., Furey, P., Welter, J., Limm, M., Finlay, J., Bode, C., Chang, S., Goodrich, M. & Sculley, J. (2009). Algal mats and insect emergence in rivers under Mediterranean climates: towards photogrammetric surveillance. Freshwater Biology, 54: 2101-2115. DOI: 10.1111/j.1365- 2427.2008.02163.x.
  • [22]. Saunders, L.L. , Kilham S.S., Fairchild G.W, Verb R. (2012). Effects of small-scale environmental variation on metaphyton condition and community composition. Freshwater Biology, 57: 1884-1895. DOI: 10.1111/j.1365-2427.2012.02851.x.
  • [23]. Scheffer, M. (2001). Ecology of shallow lakes. Kluwer Academic Pub. Dordrecht.
  • [24]. Scheffer, M., Van Geest, G.J., Zimmer, K., Jeppesen, E., S0ndergaard, M., Butler, M.G., Hanson, M.A., Declerck, S. & De Meester, L. (2006). Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos, 112: 227¬231. DOI:10.1111/j.0030-1299.2006.14145.x.
  • [25]. Schories, D. (1995). Populationsökologie und Massenentwicklung von Enteromorpha spp. (Chlorophyta) im Sylter Wattenmeer. Bericht aus dem Institut für Meereskunde an der Christian- Albrechts-Universität Kiel 271, 145 pp.
  • [26]. Starmach, K. (1972). Zielenice nitkowate, Flora Słodkowodna Polski, PWN, Warszawa- Kraków.
  • [27]. Stewenson, R.J. (1996). Algal Ecology: Freshwater Benthic Ecology. California: Elsevier.
  • [28]. Turner, M.A., Jackson, M.B., Findlay, D.L., Graham, R.W., EdBruyn, E.R. & Vandermeer, E. M. (1987). Early responses of periphyton to experimental lake acidification. Canadian Journal of Fisheries and Aquatic Sciences; 44(S1):s135-s149.
  • [29]. Wetzel, R.G. (2001). Limnology. Lake and River ecosystems. 3rd ed. Academic Press.
  • [30]. Wu, X. & Mitsch, WJ. (1998). Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands, 18(1): 9-20.
  • [31]. Zohary, T., Fishbein, T., Kaplan, B. & Pollingher, U. (1998). Phytoplankton-metaphyton seasonal dynamics in a newly- created subtropical wetland lake. Wetlands Ecology and Management 6:133-142.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b7a74e0-1b91-444f-b240-63b87e14e6b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.