PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Some Chemical Additives in Increasing the Electrical Conductivity of the Liquid Fuel Dimethyl Aminoethyl Azide (DMAZ)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The novel liquid fuel 2-dimethylaminoethyl azide (DMAZ) is a good candidate for the replacement of the hydrazine family in space programs. However, it suffers from low electrical conductivity, which is dangerous during the production process and its transportation. A simple and effective way to increase its electrical conductivity is the use of antistatic additives. In this article, the electrical conductivity of DMAZ was initially predicted via an artificial neural network. Then, the increase in electrical conductivity of DMAZ was investigated using some chemical surfactants (such as hexylamine, octylamine and tributylamine), acetonitrile as a polar aprotic substance and a DMAZ salt (DMAZ·HCl) as an ionic liquid. Of these additives, acetonitrile had the greatest effect on the electrical conductivity of the fuel, exhibiting an increase in conductivity of about 45%. Adding a two-component mixture of acetonitrile and the DMAZ salt, further increased the electrical conductivity of the fuel by about 55%, relative to pure DMAZ. Tributylamine did not have a significant effect on the electrical conductivity of the fuel.
Rocznik
Strony
265--280
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 16765/3454, Tehran, Iran
  • Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 16765/3454, Tehran, Iran
  • Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 16765/3454, Tehran, Iran
  • Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 16765/3454, Tehran, Iran
Bibliografia
  • [1] Thompson, D. Tertiary Amine Azidesin Hypergolic Liquid or Gel Fuels Propellant System. Patent US 6013143, 2000.
  • [2] Pakdehi, S.G.; Niknam, M. Shelf Life Prediction of a Novel Liquid Fuel, 2-Dimethylaminoethyl Azide (DMAZ). Cent. Eur. J. Energ. Mater. 2017, 14(3): 675-687; DOI: 10.22211/cejem/68410.
  • [3] Chen, C.C.; McQuaid, M. A Thermochemical Kinetic-Based Study of Ignition Delays for 2-Azidoethanamine − Red Fuming Nitric Acid Systems: 2-Azido-NMethylethanamine (MMAZ) Vs. 2-Azido-N,N-Dimethylethanamine (DMAZ).Report ARL-TR-6787, 2014.
  • [4] Keshavarz, M.H. Combustible Organic Materials: Determination and Prediction of Combustion Properties. De Gruyter, Berlin, 2018; ISBN 978-3110572209.
  • [5] Handberg, R. The Future of the Space Industry: Private Enterprise and Public Policy. Praeger, New York, 1995; ISBN 978-0899309262.
  • [6] Pakdehi, S.G.; Rezaei, S.; Motamedoshariati, H.; Keshavarz, M.H. Sensitivity of Dimethyl Aminoethyl Azide (DMAZ) as a Non-Carcinogenic and High Performance Fuel to Some External Stimuli. J. Loss Prev. Process Ind. 2014, 29: 277-282; DOI: 10.1016/j.jlp.2014.03.006.
  • [7] Gu, Z.; Wei, W.; Su, J.; Yu, C.W. The Role of Water Content in Triboelectric Charging of Wind-Blown Sand. Sci. Rep. 2013, 3: 1-6; DOI: 10.1038/srep01337.
  • [8] Abdullaeva, N.R.; Ismailov, T.A.; Mamedova, T.A.; Magerramov, R.S.; Veliev, K.R.; Abbasov, V.M. Synthesis and Study of Antistatic Diesel Additives Based on Petroleum Acids. Petrol. Chem. 2011, 51(4): 299-302: DOI: 10.1134/S0965544111030029.
  • [9] Kalekar, M.S.; Bhagwat, S.S. Effect of Additives on the Dynamic Behavior of Surfactants in Solution. J. Dispers. Sci. Technol. 2007, 28(6): 907-911; DOI: 10.1080/01932690701462805.
  • [10] Cookey, G.A.; Nwokobia, F.U. Conductivity Studies of Binary Mixtures of Ionic and Non-Ionic Surfactants at Different Temperatures and Concentrations. J. Appl. Sci. Environ. Manage. 2014, 18(3): 530-534; DOI: 10.4314/jasem.v18i3.21.
  • [11] Bratovcic, A.; Nazdrajic, S.; Odobasic, A.; Sestan, I. The Influence of Type of Surfactant on Physicochemical Properties of Liquid Soap. Int. J. Mater. Chem. 2018, 8(2): 31-37; DOI: 10.5923/j.ijmc.20180802.02.
  • [12] Vila, J.; Ginés, P.; Rilo, E.; Cabeza, O.; Varela, L.M. Great Increase of the Electrical Conductivity of Ionic Liquids in Aqueous Solutions. Fluid Phase Equilibr. 2006, 247(1-2): 32-39; DOI: 10.1016/j.fluid.2006.05.028.
  • [13] Pinkert, A.; Ang, K.L.; Marsh, K.N.; Pang, S. Density, Viscosity and Electrical Conductivity of Protic Alkanolammonium Ionic Liquids. Phys. Chem. Chem. Phys. 2011, 13(11): 5136-5143; DOI: 10.1039/C0CP02222E.
  • [14] Costa,J.C.; Oliveira, M.; Machado,A.V.; Lanceros-Méndez, S.; Botelho, G. Effect of Antistatic Additives on Mechanical and Electrical Properties of Polyethylene Foams. J. Appl. Polym. Sci. 2009, 112(3): 1595-1600; DOI: 10.1002/app.29503.
  • [15] Rofika, R.N.S.; Honggowiranto, W.; Jodi, H.; Sudaryanto, S.; Kartini, E.; Hidayat, R. The Effect of Acetonitrile as an Additive on the Ionic Conductivity of Imidazolium-Based Ionic Liquid Electrolyte and Charge-Discharge Capacity of Its Li-Ion Battery. Ionics 2019, 25: 3661-3671; DOI: 10.1007/s11581-019-02919-4.
  • [16] Cao, Y.; Yu, J.; Song, H.; Wang, X.; Yao, S. Prediction of the Electric Conductivity of Ionic Liquids by Two Chemometrics Methods. J. Serb. Chem. Soc. 2013, 78(5): 653-667; DOI: 10.2298/JSC120307063C.
  • [17] Tokuda, H.; Tsuzuki, S.; Susan, M.A.B.H.; Hayamizu, K.; Watanabe, M.J. How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. J. Phys. Chem. B 2006, 110(39): 19593-19600; DOI: 10.1021/jp064159v.
  • [18] Xu, P.; Xu, S.; Yin, H. Application of Self-Organizing Competitive Neural Network in Fault Diagnosis of Suck Rod Pumping System. J. Petrol. Sci. Eng. 2007, 58(1-2): 43-48; DOI: 10.1016/j.petrol.2006.11.008.
  • [19] Eslamloueyan, R.; Khademi, M.H. UsingArtificial Neural Networksfor Estimation of Thermal Conductivity of Binary Gaseous Mixtures. J. Chem. Eng. Data 2009, 54(3): 922-932; DOI: 10.1021/je800706e.
  • [20] Hagan, M.T.; Demuth, H.B.; Beale, M.H. Neural Network Design. PWS Publishing, Boston, 1996; ISBN 0534943322.
  • [21] Maurya, A.K.; Narayana, P.L.; Geetha Bhavani, A.; Jae-Keun, H.; Yeom, J.-T.; Reddy, N.S.Modeling the Relationship Between Electrospinning Process Parameters and Ferrofluid/PolyvinylAlcohol Magnetic Nanofiber Diameter byArtificial Neural Networks. J. Electrostat. 2020, 104: 1-10; DOI: 10.1016/j.elstat.2020.103425.
  • [22] Kişi, Ö. River Flow Forecasting and Estimation Using Different Artificial Neural Network Techniques. Hydrol. Res. 2008, 39(1): 27-40.
  • [23] Wu, Q.; Wei, M. A Mathematical Expression for Air ESD Current Waveform Using BP Neural Network. J. Electrostat. 2013, 71(2): 125-129; DOI: 10.1016/j.elstat.2012.12.008.
  • [24] Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. Math. Control Signals Syst. 1989, 2: 303-314; DOI: 10.1007/BF02551274.
  • [25] Lide, D.R. CRC Handbook of Chemistry and Physics. CRC Press, New York, 2004, ISBN 978-0849304811.
  • [26] A Compilation of NFPA Technical Committee Reports on Proposals for Public Review and Comment. NFPA 77 Numerical Designation, 2013.
  • [27] Dukhin, A.S.; Goetz, P.J. How Non-Ionic “Electrically Neutral” Surfactants Enhance Electrical Conductivity and Ion Stability in Non-Polar Liquids. J. Electroanal. Chem. 2006, 588(1): 44-50; DOI: 10.1016/j.jelechem.2005.12.001.
  • [28] Sharon, M.; Modi, F.; Sharon, M. Titania Based Nanocomposites as a Photocatalyst: A Review. AIMS Mater. Sci. 2016, 3(3): 1236-1254; DOI: 10.3934/matersci.2016.3.1236.
  • [29] Utriainen, K. Soap Micelles in Nonpolar Media. MSc Thesis, Aalto University, Finland, 2018.
  • [30] Rybinska-Fryca,A.; Sosnowska, A.; Puzyn, T. Prediction of Dielectric Constant of Ionic Liquids. J. Mol. Liq. 2018, 15: 57-64; DOI: 10.1016/j.molliq.2018.03.080.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b76d457-5cd5-4225-b72a-f649af33fb78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.