
Cent. Eur. J. Energ. Mater. 2022, 19(3): 264-280; DOI 10.22211/cejem/154826
Article is available in PDF-format, in colour, at:  
https://ipo.lukasiewicz.gov.pl/wydawnictwa/cejem-woluminy/vol-19-nr-3/

Article is available under the Creative Commons Attribution-Noncommercial-NoDerivs 
3.0 license CC BY-NC-ND 3.0.

Research paper

Effect of Some Chemical Additives in Increasing 
the Electrical Conductivity of the Liquid Fuel Dimethyl 

Aminoethyl Azide (DMAZ)

Shahram G. Pakdehi*, Hamidreza Taffazolinia, 
Sajjad Rezaei, Manoochehr Fathollahi

Faculty of Chemistry and Chemical Engineering, Malek Ashtar 
University of Technology, P.O. Box 16765/3454, Tehran, Iran
*E-mail: sh_ghanbari73@yahoo.com

Abstract: The novel liquid fuel 2-dimethylaminoethyl azide (DMAZ) is a good 
candidate for the replacement of the hydrazine family in space programs. 
However, it suffers from low electrical conductivity, which is dangerous during the 
production process and its transportation. A simple and effective way to increase its 
electrical conductivity is the use of antistatic additives. In this article, the electrical 
conductivity of DMAZ was initially predicted via an artificial neural network. 
Then, the increase in electrical conductivity of DMAZ was investigated using 
some chemical surfactants (such as hexylamine, octylamine and tributylamine), 
acetonitrile as a polar aprotic substance and a DMAZ salt (DMAZ·HCl) as 
an ionic liquid. Of these additives, acetonitrile had the  greatest  effect  on  the 
electrical conductivity of the fuel, exhibiting an increase in conductivity 
of about 45%. Adding a two-component mixture of acetonitrile and the DMAZ salt, 
further increased the electrical conductivity of the fuel by about 55%, relative to 
pure DMAZ. Tributylamine did not have  a  significant  effect  on the electrical 
conductivity of the fuel.
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Nomenclature
bj Bias of the neuron j of the hidden layer
f Activation or transfer function of the neuron
j Hidden neuron
MSE Mean square error
N Total number of data values used
nj Output of a neuron
R Determination coefficient
wjr Weight of the connection among the input neurons with the hidden layer
Xi Real value
Xmax Maximum actual values
Xmin Minimum actual values
Xn Normalized value
xr Input neuron
y Experimental value with network
yf Calculated value with network

1 Introduction

2-Dimethylaminoethyl azide (DMAZ, Me2NCH2CH2N3) is a highly energetic 
liquid fuel and a good candidate for use in the aerospace industry. It is an alternative 
fuel for the carcinogenic hydrazine family [1-4]. However, in contrast to the 
hydrazine family, DMAZ suffers from low electrical conductivity problems [5, 6]. 
During work on DMAZ production on an industrial scale, it was observed that 
this fuel has a relatively high sensitivity to electrostatic discharge. In addition, 
high chargeability was observed during the transfer process of this fuel, which 
leads to fire and explosion. Thus, to prevent these hazards, the conductivity of 
the fuel should be increased.

Unfortunately, there is very little information on the electrical properties of 
liquid fuel DMAZ. However, different methods have been employed to remove 
or control static electricity in flammable fuels. One of the simplest ways to 
discharge an electric charge is grounding. Other methods used for this purpose 
include increasing the humidity, use of neutral gases, ventilation, etc [7, 8]. 
However, none of these methods are fully effective and do not completely 
discharge the electrical charge accumulated in the fuel. One of the most effective 
ways to solve this problem is to reduce the electrical resistance of the fuel 
via antistatic additives [9]. Antistatic additives have the advantage of requiring 
the addition of only a few parts per million (ppm) to increase the conductivity 



266 S.G. Pakdehi, H. Taffazolinia, S. Rezaei, M. Fathollahi

Copyright © 2022 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland

of an insulating liquid by several orders of magnitude without affecting its other 
thermophysical or performance properties. However, they do not prevent the 
creation of static electricity. Rather, they only contribute to the relaxation of 
electrical charges in hazardous sites by increasing the electrical conductivity 
of the fuel, which, in return, may contribute to an increase in the rate of fuel 
transfer [8]. Several groups of the additives exist, such as surfactants, ionic liquids 
and polar aprotic materials [9-15].

Various methods have been reported for the prediction of the electrical 
conductivity in liquids, such as quantum calculations, molecular dynamics (MD) 
simulation, some Monte Carlo simulations, hole theory, the computer-aided 
reverse design method, the QSPR method, the back-propagation artificial 
neural network (BP ANN) method, group contribution-based prediction method, 
structure-based method, etc. These methods were completely discussed 
by Cao et al. [16]. They stated that the disadvantages of these methods 
included weaknesses in predicting the conductivity of new liquids and needed 
complex parameters. However, one conventional predictive method for nonionic 
high energetic liquids is the artificial neural network or ANN method. DMAZ 
is a nonionic liquid. Therefore, in this article, the electrical conductivity of the 
liquid fuel DMAZ will be initially predicted by an artificial neural network 
and then validated experimentally. For new liquid fuels, this is a novel idea. 
Afterwards, the effects of the chemical additives on increasing the electrical 
conductivity of the fuel will be studied. It is hoped that the results of this research 
will be helpful in increasing safety in the production and transportation of the 
liquid fuel DMAZ in the aerospace industry.

2 Artificial Neural Network Theory

2.1 Network design
Artificial neural networks (ANNs) are nonlinear learning mathematical models 
that are designed as simulation of human brain procedures and have been used 
in many scientific disciplines [17-19]. A neural network consists of a number 
of simple processing elements, called the neurons. Each neuron of the neural 
network is connected to others by means of direct communication links, 
each with an associated weight, which represents information being used by 
the network to solve the problem. The output of a neuron is computed from the 
following Equation 1 [19]:
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where wjr is the weight of the connection among the input neurons with the 
hidden layer, j is the hidden neuron, xr is the input, the term bj corresponds to 
the bias of the neuron j of the hidden layer, and f is the activation or transfer 
function of the neuron.

Different types of transfer functions have been proposed for ANNs, 
such as linear, logarithmic sigmoid, hyperbolic tangent sigmoid, and radial 
basis transfer functions [20]. In the present study, the hyperbolic tangent 
sigmoid (Equation 2) and the linear (purelin) function (Equation 3) were utilized 
as the transfer functions of the input and output layer.
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2.2 Normalization
Data should be normalized because raw data entry reduces the network speed 
and  accuracy.  Since  each  parameter  has  its  own  classifications,  in  order  to 
equalize the range of their changes data normalization occurs to prevent over-
weighting of the network weights. In this article, Equation 4 was applied for data 
normalization [21].
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where Xn, Xi, Xmax and Xmin are normalized, real, maximum actual and minimum 
actual values  respectively.

2.3 Network evaluation factors
The basis for deciding which network is best for each application run is the 
determination  coefficient (R) and mean square error (MSE). They are given 
as follows [22]:
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where y, yf and N are experimental and calculated values with the network and 
the total number of data values used, respectively. The best model performance 
based on the R criterion is one and zero for the other criteria [23].

2.4 Predicting the electrical conductivity of liquids via an artificial 
neural network

Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks, 
two of the most well-known neural networks, were used to predict the 
electrical conductivity. For this purpose, the input data for the MLP and RBF 
neural networks were: dipole moment, dielectric constant, boiling point, 
freezing point, molar volume, highest occupied molecular orbital (HOMO) 
and lowest unoccupied molecular orbital (LUMO) energies. The values of 
the HOMO and LUMO energies may be calculated via Gaussian 09 software. 
The optimized structures of DMAZ were drawn with Gauss view 5.0 and then 
the best angles and bond lengths were calculated via Gaussian 09 software using 
the B3LYP method. A schematic diagram of the neural network for the electrical 
conductivity calculation for liquids is given in Figure 1.
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Figure 1. Schematic diagram of the neural network used

3 Experimental

3.1 Materials and equipment
The materials used to increase the electrical conductivity of liquid fuel 
DMAZ were surfactants [such as hexylamine (C6H15N), octylamine (C8H19N), 
tr ibutylamine (C12H27N)],  polar aprotic materials (for example 
acetonitrile (CH3CN)) and an ionic liquid (for example a DMAZ·HCl 
salt (C4H10N4·HCl)). The surfactants and acetonitrile were analytical grade and 
purchased from Merck Co. (Germany).

DMAZ·HCl salt (C4H10N4·HCl) was synthesized by the reaction between 
an equimolar molar ratio of pure liquid DMAZ (purity >99.9 wt.%, purchased 
from 3M Co., USA) and aqueous hydrochloric acid solution. The final white 
solid was dried overnight at 70 °C. 

The electrical conductivity was measured using a calibrated electrical 
conductometer (Model 856, Metrohm Co., Swiss). The accuracy of the device 
was ±1 μS/m.



270 S.G. Pakdehi, H. Taffazolinia, S. Rezaei, M. Fathollahi

Copyright © 2022 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland

3.2 Experimental procedure
The electrical conductivity of pure liquid fuel DMAZ was measured as 10 μS/m. 
Specified amounts of the additives were added to the fuel and stirred well 
with a magnetic stirrer. The conductivity of each solution was measured using 
the conductometer at 25 °C.

4 Results and Discussion

4.1 Optimal structure selection for artificial neural network
The neural network structure is optimized by varying the number of hidden layers 
and the number of neurons within each hidden layer. According to the Cybenko 
theorem [24], the multi-layer perceptron artificial neural network and a hidden 
layer can predict any kind of nonlinear problem. The neural network structure 
used in this article has a hidden layer for predicting the electrical conductivity 
of liquids. The number of neurons in the hidden layer was determined through 
an optimization process to reduce the error. The number of appropriate neurons 
in the hidden layer depends on threefactors:
(i) the complexity of the relationship between the input and output data,
(ii) the number of training and testing data,
(iii) noise intensity applied by the dataset.

Too many neurons in the neural network may not be able to achieve the 
desired error, while they may cause overfitting. In this research, the number 
of neurons in the hidden layer was optimized by Equations 5 and 6. 
Of the neurons used, the best results were obtained when 5 neurons were used 
in the hidden layer, with a least squares error of 0.04119 and a regression 
coefficient of 0.94073. Therefore, from the optimal neural network structure 
used by seven neurons for data entry, five neurons in the hidden layer and 
one output neuron were applied because there was only one output (electrical 
conductivity) (Figure 1).

In this research, 73 data values were used for the neural network: 51 data 
values for network training, 11 data values for network validation and 11 data 
values for network testing. The data used for various chemicals [25, 26] 
were calculated after normalization according to Equation 4. The MLP neural 
network regression results are shown in Figure 2. As can be seen from Figure 2, 
the results were more than 85% convergent. Figure 3 shows the mean square 
error of this artificial network, which is approximately 0.007.
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Figure 2. Regression values for the MLP artificial neural network
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Figure 3. Mean squared error values (best validation performance is 0.0076034 
at epoch 7)

The RBF neural network, like MLP, was designed to make a comparison, 
but the RBF transmission function is Gaussian. Figure 4 shows the output values 
of the RBF network regression against the target values. Also, Table 1 shows the 
mean squared error values for the MLP and RBF neural networks.
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Figure 4. Regression values for the RBF neural network

Table 1. Mean squared error values for the MLP and RBF networks
Mean squared error valueNeural network

0.0070MLP
0.0202RBF

Taking these results into account, it is clear that the MLP neural network 
gives  a  better  prediction  than  the RBF network. The electrical conductivity 
of some low-conductivity pure fuels and organic liquids was investigated 
by the MLP neural network method, and is presented in Table 2. As shown, 
the values predicted by the neural network are close to the measured values. 
Using this method, theelectrical conductivity value of DMAZ was predicted 
as 9.1 and 8.8 µS/m by the MLP and RBF methods, respectively. These are very 
close to the measured value of 10 μS/m (as stated later). It should be noted that 
in some cases the error is high. This may be for two reasons:
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‒  low number of data values used,
‒  use of more descriptors to better predict the electrical conductivity.
It is hoped that with the development of this method, the conductivity of the fuel 
mixture can be predicted.

Table 2. The results of the neural network prediction for some organic liquids

Error [%]
Predicted electrical 

conductivity via neural 
network [μS/m]

Electrical conductivity 
[μS/m] [25]Material

1.506.09 · 10‒66 · 10‒6Acetone
8.890.1230.135Ethanol
11.257.1 · 10‒78 · 10‒7Toluene
10.0044 · 10‒640 · 10‒6Methanol
1.3430.4 · 10‒630 · 10‒6Diethyl ether
4.315.325.1Water
12.38105 · 10‒392 · 10‒3Acetonitrile

4.2 Experimental results

4.2.1	Effect	of	amine	surfactant	additives
As was mentioned, the amine additives were investigated due to their compatibility 
with DMAZ. They serve as surfactant. Some surfactants are capable of increasing 
electrical conductivity due to the production of micelles or reverse micelles. 
Surfactants were thought to increase the electrical conductivity of liquid 
fuel DMAZ. For this reason, materials such as hexylamine, octylamine and 
tributyl amine, all of which have a polar head and a nonpolar head, were used. 
Hexylamine and octylamine were used to compare the chain length [27]. 
They were added to the fuel at various concentrations. Preliminary experiments 
showed  the  effective  concentrations  of  the  additives  used were  3000,  4000 
and 5000 ppm. At concentrations lower than 3000 ppm, no change in the electrical 
conductivity of the fuel was observed.

The electrical conductivity test data (in μS/m) are presented in Figure 5. 
As is shown in this figure, octylamine and hexylamine increased the electrical 
conductivity to a small extent, but tributylamine did not change the electrical 
conductivity of the test fuel.
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Figure 5. Effect of different concentrations of hexylamine, octylamine and 

tributylamine on the electrical conductivity of liquid fuel 
DMAZ (-▲- Octylamine, -♦- Hexylamine, ··■·· Tributyl amine)

There is the possibility of micelle formation in the fuel due to the addition 
of a surfactant. Therefore, one of the causes could be micelle formation and 
consequently increased electrical conductivity. By forming micelles and 
collisions between them, charged micelles could be formed which affect the 
electrical conductivity. As a consequence, the presence of micelles in the solution 
and their collision with each other transfers energy between them and may cause 
an electric charge to affect the electrical conductivity [28].

According to Figure 5, it is apparent that octylamine increased the 
electrical conductivity more than hexylamine. As the hydrocarbon chain is 
increased (octylamine versus hexylamine), the critical micelle concentration 
is decreased. Therefore, micelles are formed faster and are more effective in the 
transfer of electrical current. As a result, the mechanism on adding octylamine 
is similar to that of hexylamine, except that the critical micelle concentration 
for octylamine is lower [29].

There was no change in electrical conductivity on addition of tributylamine. 
This amine is unable to produce micelles because its hydrocarbon chain is small. 
As a result, it failed to increase the electrical conductivity.
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4.2.2	Effect	of	aprotic	and	ionic	liquid	additives
The electrical conductivity of the test fuel increased on addition of 
acetonitrile (as a low price aprotic material) and DMAZ·HCl salt (Figure 6). 
Octylamine, the surfactant which had the highest effect on DMAZ’s 
electrical conductivity, is shown for comparison.

9

10

11

12

13

14

15

500 600 700 800

El
ec

tr
ic

al
 c

on
du

ct
iv

ity
 o

f f
ue

l D
M

A
Z 

[μ
S/

m
]

Additive concentration [ppm]
Figure 6. Changes in electrical conductivity of liquid fuel DMAZ 

on adding acetonitrile and DMAZ·HCl salt (··●·· acetonitrile, 
-■- DMAZ·HCl salt, -▲- octylamine)

Acetonitrile has a high dielectric constant (about 39) [26]. When the acetonitrile 
concentration is increased, the dielectric constant is increased [30], 
enhancing molecular dissociation of acetonitrile. Thereby, ion production 
will be increased, and hence the electrical conductivity of the fuel solution 
will be increased.

Of the ionic liquids, DMAZ·HCl salt has the least unwanted side-effects 
on the fuel properties. Therefore, this was selected as the ionic liquid additive. 
The addition of DMAZ·HCl salt increased the electrical conductivity of the fuel. 
One explanation for this effect is that by adding the ionic liquid, ions are produced 
which carry the charges in the fuel. Higher salt concentrations lead to greater 
production of ions and hence higher electrical conductivity of the fuel.
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The average value of the dielectric constant for the majority of ionic liquids 
is 15.5 [30]. Acetonitrile has a greater dielectric constant than DMAZ·HCl 
salt (39 versus 15.5). Therefore, the electrical conductivity with acetonitrile 
is greater than with DMAZ·HCl salt. Figure 6 confirms this deduction.

By adding octylamine to the fuel, there was no change in electrical 
conductivity in the concentration range 500-800 ppm. So, as was stated, 
the concentration of octylamine would have to be increased to 3000-5000 ppm 
in order to show a significant increase in the electrical conductivity of the fuel.

4.2.3	Effect	of	a	mixture	of	acetonitrile	and	DMAZ·HCl salt 
on	the	electrical	conductivity	of	liquid	fuel	DMAZ

As was stated in the previous subsection, acetonitrile and DMAZ·HCl salt had 
the greatest effect on the electrical conductivity of the fuel. It may therefore 
be  advantageous  to  use  a mixture  of  these  two  compounds. The  effect of 
adding the mixture (50/50 by weight) on the electrical conductivity of the fuel 
is demonstrated in Figure 7. The electrical conductivity with each individual 
material is also shown for comparison.
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Figure 7. Electrical conductivity with a two-component mixture of acetonitrile 

and DMAZ·HCl salt compared with the conductivity with each 
individual component (··♦·· acetonitrile + DMAZ·HCl salt,  
-■- acetonitrile, -▲- DMAZ·HCl salt)
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It is clear from Figure 7 that adding the two-component mixture 
had a greater effect on the electrical conductivity than when the two components 
were added separately. In other words, acetonitrile and DMAZ·HCl salt 
synergically increase the electrical conductivity.

5 Conclusions

♦  The RBF  and MLP  artificial  neural  networks were  used  to  predict  the 
electrical conductivity of a novel liquid fuel 2-dimethylaminoethyl 
azide (DMAZ). The MLP neural network gave a better prediction than RBF.

♦  The electrical conductivity of some low-conductivity pure fuels and organic 
liquids was investigated by the MLP neural network method, and gave results 
close to the measured values. The MLP method predicted the electrical 
conductivity of DMAZ as 9.1 µS/m, compared to the experimental result 
of 10 µS/m. The increase in the electrical conductivity of DMAZ was then 
investigated after adding some chemical surfactants (such as hexylamine, 
octylamine, and tributylamine), acetonitrile as a polar aprotic substance 
and DMAZ·HCl salt as an ionic liquid. High concentrations of octylamine 
and hexylamine increased the electrical conductivity due to the formation 
of micelles. Tributylamine did not have a significant effect on the electrical 
conductivity of the fuel. Of the other additives, acetonitrile had the greatest 
effect on the electrical conductivity of the fuel, increasing the conductivity 
by about 45%.

♦  Adding  a  two-component mixture  of  acetonitrile  and DMAZ·HCl salt, 
further increased the electrical conductivity of the fuel and enhanced DMAZ 
conductivity by about 55%, relative to pure DMAZ, compared to when each 
compound was added separately. 
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