PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generalized backward doubly stochastic differential equations driven by Lévy processes with non-Lipschitz coefficients

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove an existence and uniqueness result for generalized backward doubly stochastic differential equations driven by Lévy processes with non-Lipschitz assumptions.
Rocznik
Strony
259--272
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • UFR Mathématiques Informatique, Université de Cocody, 22 BP 582 Abidjan 22
autor
  • UFR Mathématiques Informatique, Université de Cocody, 22 BP 582 Abidjan 22
Bibliografia
  • [1] V. Bally and A. Matoussi, Weak solutions for SPDEs and backward doubly stochastic differential equations, J. Theoret. Probab. 14 (2001), pp. 125-164.
  • [2] B. Boufoussi, J. van Casteren and N. Mrhardy, Generalized Backward doubly stochastic differential equations and SPDEs with nonlinear Neumann boundary conditions, Bernoulli 13 (2007), pp. 423-446.
  • [3] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equation in finance, Math. Finance 7 (1997), pp. 1-71.
  • [4] G. Gong, An Introduction of Stochastic Differential Equations, 2nd edition, Peking University of China, Peking 2000.
  • [5] S. Hamadène and J.-P. Lepeltier, Zero-sum stochastic differential games and backward equations, Systems Control Lett. 24 (1995), pp. 259-263.
  • [6] L. Hu, A. Lin and Y. Ren, Stochastic PDIEs and backward doubly stochastic differential equations driven by Lévy processes, J. Comput. Appl. Math. 229 (2009), pp. 230-239.
  • [7] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Stud. Adv. Math. 24 (1990).
  • [8] D. Nualart and W. Schoutens, Backward stochastic differential equations and Feynman-Kac formula for Lévy processes, with applications in finance, Bernoulli 7 (2001), pp. 761-776.
  • [9] M. N’zi and J. M. Owo, Backward doubly stochastic differential equations with non-Lipschitz coefficients, Random Oper. Stochastic Equations 16 (2008), pp. 307-324.
  • [10] E. Pardoux and S. Peng, Adapted solution of backward stochastic differential equations, Systems Control Lett. 4 (1990), pp. 55-61.
  • [11] E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in: Stochastic Partial Differential Equations and Their Applications (Charlotte, NC, 1991), Lecture Notes in Control and Inform. Sci. 176, Springer, Berlin 1992, pp. 200-217.
  • [12] E. Pardoux and S. Peng, Backward doubly stochastic differential equations and systems of quasilinear SPDEs, Probab. Theory Related Fields 98 (1994), pp. 209-227.
  • [13] E. Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumann boundary value problems, Probab. Theory Related Fields 110 (1998), pp. 535-558.
  • [14] S.Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stoch. Stoch. Rep. 37 (1991), pp. 61-74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b733d73-8a4d-4777-99d6-98dc10dff34f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.