Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper concerns models with time dependencies that can be used in modelling dynamic reliability and complex maintenance processes. Emphasis is put on models that have been elaborated with authors participation. The following models are presented: fault trees with time dependencies, probabilistic fault trees with time dependencies, reliability enhanced activity diagrams. The above models are illustrated by examples. Both types of fault trees are used in modelling the time coordination of distance protections in high voltage transmission line. Then reliability enhanced activity diagrams that express the maintenance process of computer system with redundant components. Components are submitted to failures and repairs.
Rocznik
Tom
Strony
11--22
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Wroclaw University of Technology, Wroclaw, Poland
autor
- Wroclaw University of Technology, Wroclaw, Poland
autor
- Wroclaw University of Technology, Wroclaw, Poland
autor
- Wroclaw University of Technology, Wroclaw, Poland
autor
- Wroclaw University of Technology, Wroclaw, Poland
Bibliografia
- [1] ALSTOM T&D (2002). Network Protection & Automation Guide, First edition, ALSTOM.
- [2] Babczyński, T., Łukowicz, M. & Magott, J. (2010). Time coordination of distance protections using probabilistic fault trees with time dependencies. IEEE Transaction on Power Delivery, July, Vol. 25, No. 3, 1402-1409.
- [3] Babczyńsk,I, T., Łukowicz, M. & Magott, J. (2010). Selection of Zone 3 time delay for backup distance protection using probabilistic fault trees with time dependencies. Przegląd Elektrotechniczny, Electrical Review, Vol. 86, No 9, 208-215.
- [4] Bobbio, A. & Codetta, D. (2004). Parametric fault trees with dynamic gates and repair boxes. Proc. Annual Symposium on Reliability and Maintainability, 459-465.
- [5] Dugan, J.B., Bavuso, S.J. & Boyd, M.A. (1992). Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab., Vol. 41, No 3, 363-367.
- [6] EMTP (Electromagnetic Transient Program) “Reference manual”, Leuven center, 1987.
- [7] Fault Tree Analysis (FTA) (1990). International Technical Commission, IEC Standard, Publication 1025.
- [8] Górski, J., Magott, J. & Wardzinski, A. (1995). Modelling fault trees using Petri nets. Proc. SAFECOMP’95, Belgirate, Italy, LNCS, Springer-Verlag.
- [9] ISO/IEC 15909-1, High-level Petri nets: Concepts, definitions and graphical notation, 2004.
- [10] Jenkins, L. & Khincha, H.P. (1992). Deterministic and stochastic Petri net models of protection schemes. IEEE Transaction on Power Delivery , Vol. 7, No 1.
- [11] Lee, S.J. & Seong, P.H. (2004). Development of automated operating procedure system using fuzzy colored Petri nets for nuclear power plants. Annals of Nuclear Energy, Vol. 31, 849-869.
- [12] Kowalski, M. & Magott, J. (2011). Conjoining fault trees with Petri nets to model repair policies. Artificial Intelligence and Soft Computing, Springer (to appear).
- [13] Kowalski, M. & Magott, J. (2011). Towards an UML profile for maintenance process and reliability analysis. Artificial Intelligence and Soft Computing, Springer (to appear).
- [14] Kowalski, M., Magott, J., Nowakowski, T. & Werbińska-Wojciechowska, S. (2011). Analysis of transportation system with the use of Petri nets. Maintenance and Reliability, 2011, No 1, 117-128.
- [15] Łukowicz, M., Magott, J. & Skrobanek, P. (2011). Selection of minimal tripping times for distance protection using fault trees with time dependencies. Electric Power Systems Research, doi:10.1016/j.epsr.2011.03.003 (to appear).
- [16] Magott, J. & Skrobanek, P. (2000). A method of analysis of fault tree with time dependencies. Proc. SAFECOMP 2000, Rotterdam, The Netherlands, LNCS,Vol. 1943, Springer-Verlag, 2000, 176-186.
- [17] Magott, J. & Skrobanek, P. (2002). Method of time Petri net analysis for analysis of fault trees with time dependencies. IEE Proceedings - Computers and Digital Techniques, Vol. 149, No 6, 2002, 257-271.
- [18] Merle, G., Roussel, J.-M., Lesage, J.-J. & Bobbio, A. (2010). Probabilistic algebraic analysis of fault trees with priority dynamic gates and repeated events. IEEE Transactions on Reliability, Vol. 59, No 1, 250-261.
- [19] Montani, S., Portinale, L., Bobbio, A. & CodettaRaiteri, D. (2008). RADYBAN: a tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks. Reliability Engineering and System Safety, Vol. 93, Issue 7, July, 922-932.
- [20] OMG Unified Modeling Language (OMG UML), Superstructure Version 2.3 (2010). May.
- [21] Palshikar G.K. (2002). Temporal fault trees. Information and Software Technology, Vol. 44, 137-150.
- [22] Russel, N., ter Hofstede, A.H.M., van der Aalst, W.M.P. & Mulyar, N. (2006). Workflow controlflow patterns, A revised view.
- [23] Siu, N. (1994). Risk assessment for dynamic systems: An overview. Reliability Engineering and System Safety, Vol. 43, 43-73.
- [24] Developer Works on IBM Rational Software Architect https://www.ibm.com/developerworks/rational/
- [25] The UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded Systems. http://www.omg.org/omgmarte/Specification.htm
- [26] http://www.relex.com/resources/art Resources on Fault Trees
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b72c460-078f-4d9e-be63-0ee088623c75