Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, numerical solutions are obtained for steady free convective flow in a rectangular region with discrete wall heat and concentration sources by using the finite volume method. The governing equations consist of the continuity, momentum, energy and mass transfer. These equations conjointly with suitable boundary conditions are solved numerically by using this method. The novel concept in this work is to generalize the SIMPLE algorithm suitably and thereby compute the numerical solutions of the flow variables such as the temperature (θ) and the concentration (C) in addition to the components of velocity and the pressure. All non-dimensional parameters are chosen suitably in accordance with the physical significance of the problem under investigation. With the help of these numerical solutions, we have depicted the profiles of the velocity, pressure, temperature and concentration along the horizontal and vertical directions of the geometric centre of the region. The validity of the numerical solutions are ensured by comparing the present solutions with the benchmark solutions. Code validation has been given for the present problem.
Słowa kluczowe
Rocznik
Tom
Strony
5--18
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Department of Mathematics, Faculty of Mathematical Sciences University of Delhi, Delhi-110007, India
autor
- Department of Mathematics, Faculty of Mathematical Sciences University of Delhi, Delhi-110007, India
Bibliografia
- [1] Patankar, S.V., & Spalding, D.B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass. Transfer, 15(10), 1787-1806.
- [2] Ghia, U., Ghia, K.N., & Shin, C.T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411.
- [3] De Vahl Davis, G. (1983). Natural convection of air in a square cavity: A bench mark numerical solution. International Journal for Numerical Methods in Fluids, 3(3), 249-264.
- [4] Bejan, A. (1985). Mass and heat transfer by natural convection in a vertical cavity. Journal of Heat and Fluid Flow, 6(3), 149-159.
- [5] Trevisan, O.V., & Bejan, A. (1987). Combined heat and mass transfer by natural convection in a vertical enclosure. Journal of Heat Transfer, 109, 104-122.
- [6] Phanikumar, M.S. (1994).Thermosolutal convection in a rectangular enclosure with strong side-walls and bottom heating. International Journal of Heat and Fluid Flow, 15(4), 325-336.
- [7] Chamkha, Ali J., & Al-Naser, H. (2001). Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients. Int. J. Therm. Sci., 40, 227-244.
- [8] Chamkha, Ali J., & Al-Naser, H. (2002). Hydromagnetic double-diffusive convection in a rectangular enclosure with uniform side heat and mass fluxes and opposing temperature and concentration gradients. International Journal of Thermal Sciences, 41, 936-948.
- [9] Ben-Nakhi, A., & Chamkha, Ali J. (2006).Natural convection in inclined partitioned enclosures. Journal of Heat and Mass Transfer, 42(4), 311-321.
- [10] Ben-Nakhi, A., & Chamkha, Ali J. (2007). Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length. International Journal of Thermal Sciences, 46, 467-478.
- [11] Ben-Nakhi, A., & Chamkha, Ali J. (2008). Effect of length and inclination of a thin fin on natural convection in a square enclosure. Numerical Heat Transfer, Part A: Applications, 50(4), 381-399.
- [12] Teamah, M.A., & Maghlany, M.E. (2010). Numerical simulation of double-diffusive mixed convective flow in rectangular enclosure with insulated moving lid. International Journal of Thermal Sciences, 49, 1625-1638.
- [13] Sathyamoorthy, M., & Chamkha, Ali J. (2010). Effect of magnetic field on natural convection flow in a square cavity for linearly heated side wall(s). International Journal of Thermal Sciences, 49(9), 1856-1865.
- [14] Kuznetsov, G.V., & Sheremed, M.A. (2011). A numerical simulation of double-diffusive conjugate natural convection in an enclosure. International Journal of Thermal Sciences, 50, 1878-1886.
- [15] Ozotop, H.F., Nada, E.A., Varol, Y., & Chamkha, Ali J. (2011). Natural convection in wavy enclosures with volumetric heat sources. Int. J. Therm. Sci., 50(4), 502-514.
- [16] Nikbakhti, R., & Rahimi, A.B., (2012). Double-diffusive natural convection in a rectangular cavity with partially thermally active side walls. Journal of the Taiwan Institute of Chemical Engineers, 43, 535-541.
- [17] Qin, Q., Xia, Z.A., & Tian, Z.F. (2014). High accuracy numerical investigation of double-diffusive convection in rectangular enclosure with horizontal temperature and concentration gradients. International Journal of Heat and Mass Transfer, 71, 405-423.
- [18] Ismael, M.A., Pop, Ioan, & Chamkha, Ali J. (2014). Mixed convection in a lid-driven square cavity with partial slip. International Journal of Thermal Sciences, 82, 47-61.
- [19] Arbin, N., Saleh, H., Hashim, I., Chamkha, Ali J. (2016). Numerical investigation of double-diffusive convection in an open cavity with partially heated wall via heat line approach. International Journal of Thermal Sciences, 100, 169-184.
- [20] Ghiaasiaan, Mostafa S. (2011). Convective Heat and Mass Transfer. New York: Cambridge University Press.
- [21] Versteeg, H.K., & Malalasekera, W. (2010). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Edition, India.
- [22] Bergman, T.L., Lavine, A.S., Incropera, F.P., & Dewitt, D.P. (2011). Fundamentals of Heat and Mass Transfer, Seventh Edition, John Wiley and Sons, USA.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b699000-7620-4f57-b018-a8585bb5110d