PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Climate-driven changes to streamflow patterns in a groundwater-dominated catchment

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to investigate trends and regime changes in streamflow and basic factors driving these changes. The investigated area is located in central Poland and is influenced by temperate transitional climate. New insight is provided into the phenomenon of past climatedriven changes to streamflow patterns over a 65-year period (1951– 2015). The Mann–Kendall test for monotonic trends and the CUSUM test are used to determine the presence or absence of changes in climatic variables, shallow groundwater level, and streamflow. Time series are explored to detect the direction of trends and the period when the significant change occurred. Differences in climatic conditions and streamflow patterns are discussed for two sub-periods, before and after the change. Overall, the results suggest stability in precipitation, with limited evidence for change in the annual amount, but reveal a significant change in streamflow regime in the 1980s, attributed to higher temperature driving evapotranspiration and reducing shallow groundwater recharge. It is concluded that the catchment is prone to increased evapotranspiration and in effect to greatly reduced runoff.
Czasopismo
Rocznik
Strony
789--798
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
  • Department of Hydrology, Institute of Physical Geography, Faculty of Geography and Regional Studies, University of Warsaw, Warsaw, Poland
Bibliografia
  • 1. Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284
  • 2. Banasik K, Hejduk L (2012) Long-term changes in runoff from a small agricultural catchment. Soil Water Res 7:64–72
  • 3. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) (eds) Climate change and water, Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 3–4
  • 4. Berezowski T, Szcześniak M, Kardel I, Michałowski R, Okruszko T, Mezghani A, Piniewski M (2016) CPLFD-GDPT5: high-resolution gridded daily precipitation and temperature data set for two largest Polish river basins. Earth Syst Sci Data 8:127–139
  • 5. Boulton AJ, Hancock PJ (2006) Rivers as groundwater-dependent ecosystems: a review of degrees of dependency, riverine processes and management implications. Aust J Bot 54:133–144
  • 6. Buczyński S, Wcislo M (2013) Predicting climate-induced changes in groundwater resources on the basis of hydrogeological model research: case study of the Carpathian flysch belt. Episodes 36(2):105–114
  • 7. Burt TM (2013) The silent river: the hydrological basis for river conservation. In: Sabater S, Elosegi A (eds) River conservation. Challenges and opportunities. Fundación BBVA, Bilbao, pp 39–60
  • 8. Ehsanzadeh E, Ouarda TBMJ, Saley HM (2011) A simultaneous analysis of gradual and abrupt changes in Canadian low streamflows. Hydrol Process 25:727–739
  • 9. Green TR et al (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405(3–4):532–560
  • 10. Gutry-Korycka M (2003) Long-term tendencies in water circulation in the Łasica river basin. Ecohydrol Hydrobiol 3(3):351–358
  • 11. Gutry-Korycka M, Golebiowska I (2015) Hydrological alteration of an ice-marginal valley and its influence on the extent of historical floods. Hydrol Sci J 60(3):482–497
  • 12. Hall J et al (2014) Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol Earth Syst Sci 18:2735–2772
  • 13. Hannaford J, Buys G (2012) Trends in seasonal river flow regimes in the UK. J Hydrol 475:158–174
  • 14. Haylock MR et al (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. JGR 113:D20119
  • 15. Helsel DR, Hirsch RM (2002) Statistical methods in water resources. Techniques of Water Resources Investigations, Book 4, Chapter A3, USGS
  • 16. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, CGIAR-CSI SRTM 90 m Database. Source: http://srtm.csi.cgiar.org
  • 17. Jokiel P (2016) Przepływy i odpływy maksymalne w środkowej Polsce. Geogr Tour 4(2):7–21
  • 18. Kaczmarek Z (2003) The impact climate variability on flood risk in Poland. Risk Anal 23:559–566
  • 19. Kløve B et al (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518:250–266
  • 20. Kopeć D, Michalska-Hejduk D, Krogulec E (2013) The relationship between vegetation and ground water levels as an indicator of spontaneous wet land restoration. Ecol Eng 57:242–251
  • 21. Kubrak J, Mioduszewski W, Kowalewski Z, Okruszko T (2011) Możliwości wykorzystania istniejących i projektowanych budowli na Kanale Łasica do kształtowania warunków uwilgotnienia gleb w Kampinoskim Parku Narodowym. Woda Środowisko Obszary Wiejskie 11(3):123–135
  • 22. Kumar CP (2012) Climate change and its impacts on the groundwater resources. Int J Eng Sci 1:43–60
  • 23. Kundzewicz ZW (2004) Editorial—searching for change in hydrological data. Hydrol Sci J 49(1):3–6
  • 24. Kundzewicz ZW, Radziejewski M (2006) Methodologies for trend detection. In: Demuth S, Gustard A, Planos E, Scatena F, Servat E (eds) Climate variability and change—hydrological impacts. Proceedings of the fifth FRIEND World Conference, Havana, Cuba 2006, vol 308. IAHS Publications, Wallingford, pp 538–549
  • 25. Kundzewicz ZW, Robson AJ (2004) Change detection in river flow records—a review of the methodology. Hydrol Sci J 49(1):7–19
  • 26. Loáiciga HA (2003) Climate change and ground water. Ann Assoc Am Geogr 93(1):30–41
  • 27. Meresa HK, Osuch M, Romanowicz R (2016) Hydro-meteorological drought projections into the 21-st century for selected polish catchments. Water 8(5):206
  • 28. Mioduszewski W, Kowalewski Z, Żurawski R, Stankiewicz J (2010) Drainage system in the Kampinos National Park. J Water Land Dev 14:83–95
  • 29. Osuch M, Romanowicz RJ, Lawrence D, Wong WK (2016) Trends in projections of standardized precipitation indices in a future climate in Poland. Hydrol Earth Syst Sci 20:1947–1969
  • 30. Piniewski M, Gottschalk L, Krasovskaia I, Choromanski J (2012) A GIS-based model for testing effects of restoration measures in wetlands: a case study in the Kampinos National Park, Poland. Ecol Eng 44:25–35
  • 31. Pociask-Karteczka J (2011) River runoff response to climate changes in Poland (East-Central Europe). IAHS Publ 344:182–187
  • 32. Poff NL et al (1997) The natural flow regime: a paradigm for conservation and restoration of riverine ecosystems. Bioscience 47:769–784
  • 33. Pumo D, Caracciolo D, Viola F, Noto LV (2016) Climate change effects on the hydrological regime of small non-perennial 5 river basins. Sci Total Environ 542:76–92
  • 34. Radziejewski M, Kundzewicz ZW (2004a) Detectability of changes in hydrological records. Hydrol Sci J 49(1):39–51
  • 35. Radziejewski M, Kundzewicz ZW (2004b) Development, use and application of the HYDROSPECT data analysis system for the detection of changes in hydrological time-series for use in WCP-Water and National Hydrological Services, WCASP-65, Hydrospect, Version 2.0. User’s manual, WMO, Geneva
  • 36. Raes D (2012) The ETo Calculator. Reference Manual Version 3.2. FAO UN, Rome, Italy
  • 37. Rodionov SN, Overland JE (2005) Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES J Mar Sci 62:328–332
  • 38. Romanowicz RJ et al (2016) Climate change impact on hydrological extremes: preliminary results from the Polish-Norwegian Project. Acta Geophys 64(2):477–509
  • 39. Schneider C, Laizé CLR, Acreman MC, Flörke M (2013) How will climate change modify river flow regimes in Europe? Hydrol Earth Syst Sci 17(1):325–339
  • 40. Sear DA, Armitage PD, Dawson FDH (1999) Groundwater dominated rivers. Hydrol Process 11:255–276
  • 41. Somorowska U (2006) Wpływ stanu retencji podziemnej na proces odpływu w zlewni nizinnej. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa, pp 1–151
  • 42. Stahl K et al (2010) Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol Earth Syst Sci 14:2367–2382
  • 43. Stahl K, Tallaksen LM, Hannaford J, van Lanen HAJ (2012) Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble. Hydrol Earth Syst Sci 16:2035–2047
  • 44. Szymczak T (2005) Long-term trends in runoff from small lowland catchements. J Water Land Dev 9:35–57
  • 45. Tetzlaff D et al (2013) Catchments on the cusp? Structural and functional change in northern ecohydrology. Hydrol Process 27:766–774
  • 46. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis, 1, 2, and 3. Proc R Neth Acad Sci 53:386–392 53:521–525 53:1397–1412
  • 47. Whitfield PH et al (2012) Reference hydrologic networks I. The status and potential future directions of national reference hydrologic networks for detecting trends. Hydrol Sci J 57:1568–1579
  • 48. Wrzesiński D (2010a) Detekcja zmian reżimu hydrologicznego Warty w profilu Poznania w latach 1822–2005. Studia i Prace z Geografii i Geologii 12:135–151
  • 49. Wrzesiński D (2010b) Przestrzenne zróżnicowanie stabilności reżimu odpływu rzek europejskich. Studia i Prace z Geografii i Geologii 3:1–220
  • 50. Wrzesiński D (2016) Use of Entropy in the Assessment of Uncertainty of River Runoff Regime in Poland. Acta Geophys 64(5):1825–1839
  • 51. Wrzesiński D, Tomaszewski P (2010) Stabilność elementów hydrometeorologicznych w Polsce w latach 1951–2000. Studia i Prace z Geografii i Geologii 12:169–185
  • 52. Yang Z, Zhou Y, Wenninger J, Uhlenbrook S (2012) The causes of flow regime shifts in the semi-arid Hailiutu River, Northwest China. Hydrol Earth Syst Sci 16:87–103
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b6686ee-0542-48ff-a977-9f4b778b47c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.