PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy accumulation in mechanical resonance and its use in drive systems of impact machines

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An innovative method utilizing the phenomenon of mechanical resonance in machine drive systems of impact machines has been described. Energy accumulated in mechanical resonance is typically multiple times larger than the continuously supplied excitation energy. The amount of accumulated energy depends on the amplitude of vibration, mass and stiffness of system and present energy dissipation mechanisms. This form of energy can be extracted periodically each time after the amplitude of vibration reaches its maximum value. This effect could be implemented in drive systems of periodically operating machines, such as punching machines and presses. Significant reduction of energy demand in machines that use mechanical resonance in comparison with conventional machines was confirmed by means of simulations and experiments. Accumulation of the energy at mechanical resonance and its sequential extraction were presented together with a new pro-totype resonance punching press.
Rocznik
Strony
415--425
Opis fizyczny
Bibliogr. 22 poz., fot., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-37 Wrocław, Poland
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-37 Wrocław, Poland
Bibliografia
  • [1] Crocker MJ. Handbook of noise and vibration control. Hoboken: Wiley; 2007. p. 528–45.
  • [2] Harris CM, Piersol AG. Shock and vibration handbook. New York: McGraw-Hill; 2002.
  • [3] Crawford A. Simplified handbook of vibration analysis, vol. 1. Knoxville, USA: Computational Systems; 1992.
  • [4] Aguiar R, Weber HI. Development of vibroimpact device for the resonance hammer drilling. In: Proceedings of the XII international symposium of dynamic problems of mechanics, Feb 26–Mar. 02; 2007.
  • [5] Despotovic Z, Ribic A. A comparison of energy efficiency of SCR phase control and switch mode regulated vibratory conveying drives. In: IX symposium industrial electronics, Banja Luka, Nov 01–03; 2012.
  • [6] Plooij MC, Wisse M. A novel spring mechanism to reduce energy consumption of robotic arms, intelligent robots and systems (IROS). In: IEEE/RSJ international conference, 2901–2908, 2012.
  • [7] Baek S, Ma K, Fearing R. Efficient Drive of flapping- wing robots. In: IEEE/RSJ international conference on intelligent robots and systems, St. Louis, USA, Oct 11–15; 2009.
  • [8] Glynne-Jones P, Tudor MJ, Beeby SP, White NM. An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens Actuators A. 2004;110:344–9.
  • [9] Stephen NG. On energy harvesting from ambient vibration. J Sound Vib. 2006;239:409–25.
  • [10] Lei Z, Xiudong T. Large-scale vibration energy harvesting. J Intell Mater Syst Struct. 2013;24(11):1405–30.
  • [11] Colins L. Harvesting for the world: energy harvesting techniques. IEEE Power Engineer. 2006;20:34–7.
  • [12] Zuo L, Scully B, Shestani J, Zhou Y. Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater Struct. 2010;19:1–10.
  • [13] Goldner RB, Zerigian P. A preliminary study of energy recovery in vehicles by using regenerative magnetic shock absorbers, SAE technical paper series 2001-01-2071; 2001.
  • [14] Kammer AS, Olgac N. Delayed-feedback vibration absorbers to enhance energy harvesting. J Sound Vib. 2016;363:54–67.
  • [15] Han X, Xu W, Sabu J. A multi-degree of freedom piezoelectric vibration energy harvester with piezoelectric elements inserted between two nearby oscillators. Mech Syst Signal Process Vol. 2016;68–69:138–54.
  • [16] Horodinca M, Saghedin NE. Experimental investigations of power absorbed at mechanical resonance. Exp Tech SEM. 2011; 1–11.
  • [17] Aldraihem O, Baz A. Energy harvester with a dynamic magnifier. J Intell Mater Syst Struct. 2011;22(6):521–30.
  • [18] Heo YJ, Lee WC, Kim T, Cho Y. Active micromechanical motion amplifiers using the mechanical resonance modulated by variable stiffness springs. Sens Actuators A. 2012;180:97–104.
  • [19] Fiebig W, Wrobel J. Simulation of energy flow at mechanical resonance. In: 22nd ICSV conference, Florence, Italy, July 12–16; 2015.
  • [20] Fiebig W, Wrobel J. Use of mechanical resonance in impact machines. In: Maia N, Dimitrovová Z (eds) The 14th international conference on vibration engineering and technology of machinery VETOMAC XIV, Lisbon, Portugal, September 10–13, 2018; 2018, p. 1–6.
  • [21] Fiebig W, Wrobel J. Use of mechanical resonance in machines drive systems. In: 24th ICSV conference, London, UK, July 23–27; 2017.
  • [22] Khurmi RS, Gupta JK. Theory of machines 14th edn, chapter 16: turning moment diagrams and flywheel, S. Chand & Co. Ltd., New Delhi; 2005, p. 565–611.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b665067-b306-4d07-88fb-68a8d96dca1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.