PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimentally validated numerical model of coupled flow, thermal and electromagnetic problem in small power electric motor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes results of the mathematical modelling of the steady-state thermal phenomena taking place in a Fracmo 240 W DC electric motor. The model of the motor was defined in the ANSYS Fluent software to predict flow and temperature fields inside the machine. The thermal model was coupled with an electromagnetic solver to determine power losses occurring in different parts of the unit. In order to validate the proposed numerical model, a test rig was set up to measure temperatures at points located inside the motor housing and on its external wall. Additionally, the temperature field was captured by an infrared camera. The results obtained from the coupled analysis are comparable with the measurement data.
Rocznik
Strony
133--144
Opis fizyczny
Bibliogr. 17 poz., il., rys., tab., wykr.
Twórcy
autor
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice, Poland
autor
  • Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice, Poland
autor
  • School of Engineering and Design, Brunel University Uxbridge UB8 3PH, United Kingdom
Bibliografia
  • [1] J.D. Anderson Jr. Computational Fluid Dynamics. The Basics with Applications, McGraw-Hill, USA, 1995.
  • [2] A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, C. Mejuto. Evolution and Modern Approaches for Thermal Analysis of Electrical Machines. IEEE Trans. Ind. Electron., 56 (3), March 2009.
  • [3] C.A. Cezario, A.A.M. Oliveira. Electric motors external fan system CFD validation. Proc. IEEE Int. Conf. Elect. Mach., 2008.
  • [4] C.A. Cezario, A.A.M. Oliveira. Electric motors internal fan system CFD validation. Proc. IEEE Int. Conf. Elect. Mach., 2008.
  • [5] C.-C. Chang, Y.-F. Kuo, J.-C. Wang, S.-L. Chen. Air cooling for a large-scale motor. Applied Thermal Engineering, 30 : 1360–1368, 2010.
  • [6] GAMBIT 2.4 User’s Guide. Fluent, Inc., May 2007.
  • [7] W.-G. Kim, J.-I. Lee, K.-W. Kim, Y.-S. Kim, C.-D. Lee. The temperature rise characteristic analysis technique of the traction motor for EV application. IFOST, 18–20 Oct. 2006.
  • [8] D. Lampard, S.J. Pickering, J. Mugglestone. The use of computational fluid dynamics to model the air flow in the end region of a TEFC induction motor. IEE, London, 1997.
  • [9] W. Mei, M.A. Jabbar, A.O. Tay. Determination of thermal performance of small electric motors . IEEE PEDS, Indonesia, 2001.
  • [10] Motor-CAD. [Online]. Available: www.motor-design.c om.
  • [11] A.J. Nowak. Numerical Heat Transfer, Gliwice, Poland, 2009.
  • [12] K. Plantenberg. Introduction to CATIA V5 Release 19, 2009.
  • [13] SPEED’s Electric Motors . TJE Miller, University of Glasgow, 2008, Private correspondence.
  • [14] D. Staton. Losses in Electrical Machines – Thermal Training, Private correspondence.
  • [15] D. Staton, D. Hawkins, M. Popescu. Motor-CAD Software for Thermal Analysis of Electrical Motors – Links to Electromagnetic and Drive Simulation Models. CWIEME, Berlin, June 2010.
  • [16] F.J. Trigeol, Y. Bertin, P. Lagonotte. Thermal modelling of an induction machine through the association of two numerical approaches. IEEE Trans. Energy Convers., 21 (2): 314–323, Jun. 2006.
  • [17] User’s guide of ANSYS Fluent 12. Release 12.0, c © ANSYS, Inc., 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3b655f01-425f-4826-b005-792e021f685c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.